АКТУАЛЬНЫЕ НАУЧНЫЕ ИССЛЕДОВАНИЯ В СОВРЕМЕННОМ МИРЕ

СБОРНИК НАУЧНЫХ ТРУДОВ

Выпуск 3(23)
Часть 2

Переяслав-Хмельницкий 2017
АКТУАЛЬНЫЕ НАУЧНЫЕ ИССЛЕДОВАНИЯ В СОВРЕМЕННОМ МИРЕ

ВЫПУСК 3(23)
Часть 2
Март 2017 г.

СБОРНИК НАУЧНЫХ ТРУДОВ
Выходит 12 раз в год (ежемесячно)
Издается с июня 2015 года

Включен в научометрические базы:

РИНЦ http://elibrary.ru/title_about.asp?id=58411
Google Scholar
https://scholar.google.com.ua/citations?user=JP57y1kAAAAJ&hl=uk
Бібліометрика української науки
Index Copernicus
http://journals.indexcopernicus.com/++++.p24785301.3.html

Переяслав-Хмельницкий
Актуальные научные исследования в современном мире: XXIII Международная научная конференция "Актуальные научные исследования в современном мире" (Переяслав-Хмельницкий, 26-27 марта 2017 г.), 2017. - Вып. 3(23), ч. 2 – 154 с.

Языки издания: украинский, русский, английский, польский, белорусский, казахский, о’zbek, limba română, кыргыз тили.

В сборнике представлены результаты актуальных научных исследований ученых, докторантов, преподавателей, аспирантов и студентов участников Международной научной конференции "Актуальные научные исследования в современном мире" (Переяслав-Хмельницкий, 26-27 марта 2017 г.).

Сборник предназначен для научных работников и преподавателей высших учебных заведений. Может использоваться в учебном процессе, в том числе в процессе обучения аспирантов, подготовки магистров и бакалавров в целях углубленного рассмотрения соответствующих проблем. Все статьи сборника прошли рецензирование, содержат авторскую редакцию, всю ответственность за содержание несут авторы.
СОДЕРЖАНИЕ

СЕКЦИЯ: СОВРЕМЕННЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
Qasimov Huseyn Ismailovich (Naxçivan, Azərbaycan) 6
ELEKTROUNIVERSITETIN ƏNAS ARXITEKTUR KOMPONENTLƏRİ..... 6
Babamuxamedov Mahbub Zakhirov (Tashkent, Uzbekistan) 18
ELEKTROON TALIMCILAR TARŞIQI ETİSIŞMI QOMONAVİYİ 24
YEQUTLARIN BAŞLAMIQ TALABLAR... 18
Vassiliev Vasiliy (Kremenets, Ukraine) 29
ПОЛЕ БИТВИ - ИНФОРМАЦИОННЫЙ ПРОСТРАНСТВ.... 24
Erbobaeva Medira, Niyazbek Isattay, Pashanov N. 43
(Shymkent, Kazakhstan)
«WEB-ТЕХНОЛОГИИ» ПЕДУИ ВИРГУНДЫҚ ЖАЛТУХАНА
ЖУМЫСТАРЫН СУЙКЕМІДІДЕГІ АРНАЛГАН АҚПАРАТТЫҚ WEB
САЙТЫН КҮРҮ.......................... 27
Slipachuk Luda Oleksiyivna (Kyiv, Ukraine) 29
МАШИНА ЖИЮНАРДОГУ СПЕЦИФИКАЦИЯ УКРАЇНИ І ГАЛУЗІ
КІБЕРБЕЗПЕКИ.. 29
Chehnyhskii Vitaliy Vladislavovich (Kyiv, Ukraine) 43
ІНТЕРНЕТ РЕЧІ І МЕЖАХ ПРОЕКТУ «ENLIGHT - SMART POINT»...

СЕКЦИЯ: ТЕХНИЧЕСКИЕ НАУКИ
Avekhov Margarita, Melnyk Oksana Yuriyivna (Sumy, Ukraine) 47
ВИКОРИСТАННЯ НЕТРАДИЦІЙНОЇ СИРОВИНИ В ІНЖЕНЕРІЯТЬВІ ОБІДНІХ СТРАВ
Amankulova Zhanara Askarovna (Almaty, Kazakhstan) 53
ФУНКЦИОНАЛЬНІ ВОЗМОЖНОСТИ МІКРОКРУСОРНИХ
АВТОБЛОКИРОВКИ С ТОНАЛЬНЫМИ РЕЛЬСОВЫМИ ЦЕПЯМИ С
ЦЕНТРИЗОВАНЫМ РАЗМЕЩЕНИЕМ АППАРАТУРЫ В ШАХТЕМ
ФАРИНТЕ (ABTC-MC)... 53
Andreeva Svetlana Sergiyivna, Kolpiskova Marina Borisovna, 58
Djakov Olehskiy Georgiyevich (Kharkiv, Ukraine) 58
ОПТИМИЗАЦИЯ РЕСПУБЛИЧНОГО СОЦІУМ СОЮЗІС КИШЕЗІЗ
ВИКОРИСТАННЯМ КРОХМАЛІВ ФІЗИЧНОЮ МОДИФІКАЦІЯЮ........ 58
Mustaphaeva Zholpan, Juzbaeva Azherke, Zulpaynair Ukipimay, 64
Ocan Nazira (Shymkent, Kazakhstan) 64
ДІЕТАЛЬКИ ЖЕНО ФОРФИЛАКТИЧАЙ ВАКСАТта ЕНДІРИЛІТІН
НАН АҢДМЕРІН ЖАСАУ ЕҢДІСЕРІ........ 64
Pavelchenko Oльга Vолодимирivна, Lobachova Nadir Leonidivna 67
(Суми, Україна) 67
ВИКОРИСТАННЯ БЕЗГЛЮТЕНОВОЇ СИРОВИНИ У ТЕХНОЛОГІЇ
СИРНИКАЛЬ... 67
Paulina Anna Sergievna (Tomsk, Russia) 71
СПОСОБЫ ПОДГОТОВКИ ДРЕВЕСИНЫ.................................. 71
Царенко Микола Андрійович, Калашникова Лариса Євгеніївна (Київ, Україна)
ВПЛИВ ЖОРСТКОСТІ ПРОТЕЗА НИЖНІХ КІНЦІВОК НА МЕХАНІКУ ХОДЬБИ І М'ЯЗОВУ АКТИВНІСТЬ У ПАЦІЄНТІВ З АМПУТАЦІЯМИ НИЖЧЕ КОЛІНА... 121
Черных Александр Георгиевич, Бегунов Павел Сергеевич,
Сараткина Виктория Игоревна (Минск, Беларусь)
МОДЕЛИРОВАНИЕ ЕМОЦИИ В МЕЖУРОВНЕВОЙ СТРУКТУРЕ
МЕЖСОЕДИНЕНИЙ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ......................... 128

СЕКЦИЯ: ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ
Бедебаева Айгуль (Шымкент, Казахстан)
МАТЕМАТИКА НЫ ОҚЫТУДА ЖАНА ТЕХНОЛОГИЯЛЫРДЫ КӨЛДАНУ
ЖАГДАЙЛАРЫ.. 133
Отарбаева Сандұра (Шымкент, Казахстан)
ОҚУ УРДІСТЕРІНІҢ МАТЕМАТИКАДАН ТЕСТТІК БАҚЫЛАУ
ТӘСІЛДЕРІН ПАЙДАЛАНУ... 136
Бистряницева Анастасия Миколаївна, Чиріна Анастасія
Олександрівна (Херсон, Україна)
МНОГОЧЛЕНИ ЧЕБИШЕВА-ЛАГЕРРА В ТЕОРИИ АВТОМАТИЧНОГО
УПРАВЛЯННЯ ТА КВАНТОВИЙ МЕХАНИЦІ................................. 139
Мустафин Рамиль Гамилович (Казань, Россия)
НОВЫЙ ЭТАПОН КИЛОГРАММ... 142
Сандык Бахытжан (Астана, Казахстан)
ОБЗОР СТАТЬЕЙ ПО ПРОБЛЕМЕ ТРЕТЬЕГО ИНТЕГРАЛА
ДВИЖЕНИЯ... 147
ИНФОРМАЦИЯ О СЛЕДУЮЩЕЙ КОНФЕРЕНЦИИ............................... 152
CHEBYSHEV-LAGUERRE POLYNOMIALS IN AUTOMATIC CONTROL THEORY
AND QUANTUM MECHANICS

Abstraction: Paper is devoted to the use of Chebyshev-Laguerre polynomials in automatic control theory and quantum mechanics. Paid attention to the possibility of their use in solving differential equations in an indicated area.

Keywords: orthogonal polynomials, differential equation, solution of equation

Аннотация: Работа посвящена использованию многочленов Чебышева-Лагерра в теории автоматического управления и квантовой механике. Обращается внимание на возможности их применения при решении дифференциальных уравнений в указанной области.

Ключевые слова: ортогональные многочлены, дифференциальное уравнение, решение уравнения

При розв'язуванні багатьох важливих задач в теорії автоматичного управління, математичної фізики, квантової механіки, теоретичної фізики доводиться використовувати різноманітні спеціальні функції. Найбільш вживаним із них є класичні ортогональні многочлени (поліноми), сферичні, циліндричні та гіпергеометричні функції. Ми розглянемо детально лише многочлен Чебышева-Лагерра, як один із простих ортогональних многочленів з точки зору їх подальшого застосування [1].

Перш за все зазначимо, що в математиці послідовністю ортогональних многочленів називають нескінчену послідовність дійсних многочленів \(p_0(x)\), \(p_1(x)\), \(p_2(x)\), ..., де кожен многочлен \(p_n(x)\) має степінь \(n\), а також будь-які
два різних многочленів цієї послідовності ортогональні один до одного в сенсі дейкого скалярного добутку, заданого в просторі L^2. [4].
Як відомо, в найпростішому випадку, коли одномірна автоматична система реагує на один вхідний сигнал одним вихідним сигналом, математично ця система описується одним диференціальним рівнянням вигляду:

$$a_0(t)x^{(n)}(t) + a_1(t)x^{(n-1)}(t) + \ldots + a_n(t)x(t) =$$
$$= b_0(t)y^{(m)}(t) + b_1(t)y^{(m-1)}(t) + \ldots + b_m(t)y(t) \quad (1)$$

Тут $y(t)$ — відома функція, яка визначає вхідний сигнал і називається функцією впливу, $x(t)$ — невідома функція, яка визначає вихідний сигнал.

Оскільки функції задані на півсегменті $[0; \infty)$, то можливо є застосування рядів Фур'є по многочленам Чебишева-Лагерра.

Розв'язок рівняння (1) варто шукати у вигляді

$$x(t) = \sum_{k=0}^{\infty} c_k L_k(t; \alpha), \quad t \in (0; \infty). \quad (2)$$

Для визначення коефіцієнтів ряду (2) необхідно підставити цей ряд у ліву частину рівняння (1). Але перед цим необхідно представити всі відомі функції в цьому рівняння також у вигляді рядів Фур'є по многочленам Чебишева-Лагерра. Однак при диференціюванні рядів по многочленах Чебишева-Лагерра і при обчисленні добутків в рівнянні (1) з'являться походні многочленів Чебишева-Лагерра і добутки їх на степені незалежної змінної. Всі ці величини можна перетворити і представити у вигляді лінійних комбінацій многочленів Чебишева-Лагерра з одним індексом α [2].

В окремих випадках замість формул (2) доцільно шукати розв'язок рівняння (1) у вигляді

$$x(t) = \exp\left(-\frac{\lambda t}{2}\right) \sum_{k=0}^{\infty} c_k L_k(\lambda t; \alpha).$$

Якщо всі коефіцієнти рівняння (1) постійні, то для визначення розкладу (2) можна застосувати методи операційного числення.

Многочлени Чебишева-Лагерра також застосовуються в квантовій механіці при дослідженні руху електрона в атомі водню [2, 3].

Розглянемо стаціонарне рівняння Шредінгера

$$\Delta \psi + \frac{2\mu}{\hbar^2} (E - U) \psi = 0. \quad (3)$$
математична задача полягає в тому, щоб знайти такі значення енергії E, при яких рівняння (3) має розв'язок $\psi(x; y; z)$ неперервний у всьому просторі, причому в якості нормування розв'язку приймається умова

$$\int_{\Omega} |\psi(x; y; z)|^2 dx dy dz = 1,$$ \hspace{1cm} (4)

де Ω є весь тривимірний простір.

Позначивши $\lambda = \frac{2 \mu}{\hbar^2} E$, $b = \frac{2 \mu}{\hbar^2} e^2$, маємо рівняння Шредінгера у вигляді:

$$\Delta \psi + \left(\frac{\lambda + b}{r} \right) \psi = 0.$$ \hspace{1cm} (5)

Для розв'язування рівняння (5) переходять до сферичних координат, а використання многочленів Чебишева-Лагерра дає можливість в явному вигляді отримати розв'язок рівняння та знайти спектр значень енергії, при яких існують стійкі рухи електрона навколо ядра. Такі значення $E_{nm} = -\frac{\mu a^4}{2\hbar^2 (m+n+1)^2}$, $n, m = 0, 1, 2, \ldots$ утворюють дискретний від'ємний спектр енергії.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ ТА ЛІТЕРАТУРИ