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We consider ultrametrizations of free topological groups of ultrametric spaces. A construc-
tion is defined that determines a functor in the category UMET1 of ultrametric spaces of
diameter � 1 and nonexpanding maps. This functor is the functorial part of a monad in
UMET1 and we provide a characterization of the category of its algebras.
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1. Introduction

The locally invariant topologies on the free groups, i.e. the topologies generated by the invariant pseudometrics is an
object of study in many papers (see, e.g., [8]).

Recall that a metric d on a set X is said to be an ultrametric (a non-Archimedean metric, in another terminology) if the
following strong triangle inequality holds:

d(x, y) � max
{

d(x, z),d(z, y)
}

for all x, y, z ∈ X .
In [11], an ultrametric is defined on the set of probability measures with compact supports defined on an ultrametric

space. In [4], some properties of the obtained functor Meas in the category of (complete) ultrametric spaces of diameter
� 1 are established. It is pointed out in [4] that the functor Meas fits naturally in the metric approach to the programming
language semantics.

Similar construction is defined for the so called idempotent measures in [5,12]. The aim of the present paper is to define
a natural ultrametric on the free topological group in the sense of Markov [7] of an ultrametric space.

Recall that a (pseudo)metric d on a group G is called left invariant (respectively right invariant) if d(x, y) = d(gx, gy)

(respectively d(x, y) = d(xg, yg)), for all x, y, g ∈ G . A metric d is called invariant if d is both left and right invariant.
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It is a classical construction due to Graev [3] that extends every (pseudo)metric on a Tychonov space X to an invariant
(pseudo)metric on the free topological group F (X). Another construction, which also works for a wide class of topological
algebras, is proposed by Świerczkowski [10].

We prove that the obtained ultrametrization of the free groups over ultrametric spaces determines a functor in the cate-
gory of ultrametric spaces and nonexpanding maps. Moreover, this functor is the functorial part of a monad in the category
of ultrametric spaces of diameter � 1 and nonexpanding maps. One of the results of the paper provides a characterization
of the category of algebras of this monad. This is precisely the category of groups endowed with invariant ultrametric of
diameter � 1 and nonexpanding homomorphisms.

2. Preliminaries

Let X be a Tychonov space. Recall that a free topological group (in the sense of Markov) of X is a topological group,
denoted F (X), satisfying the following properties:

(1) X is a subspace of F (X);
(2) any continuous map of X into a topological group G admits a unique extension which is a continuous homomorphism

of F (X) into G .

Replacing, in the above definition, the term ‘group’ by ‘abelian group’, we obtain the definition of the free abelian
topological group (usually denoted by A(X)).

It is well known that the free topological groups exist. The construction of free topological group is functorial. Given
a map f : X → Y of Tychonov spaces, we define the homomorphism F ( f ) : F (X) → F (Y ) as the unique extension of
f : X → Y ↪→ F (Y ).

The Graev metric on F (X) is the maximal invariant pseudometric that induces the initial metric on X .
It is also known that algebraically F (X) is a free group over X . Every u ∈ F (X) can be represented in the form u =

xε1
1 . . . xεn

n , where x1, . . . , xn ∈ X , εi ∈ {−1,1} and xε1
1 . . . xεn

n is an irreducible word in the sense that, if xi = xi+1, then εi =
εi+1. The set {x1, . . . , xn} is then called the support of u and is denoted supp(u).

Let

F0(X) =
{

u = xε1
1 . . . xεn

n ∈ F (X)

∣∣∣ n∑
i=1

εi = 0

}
.

It is well known that F0(X) is a normal subgroup of F (X); actually, F0(X) is the kernel of the homomorphism
αX : F (X) → Z which extends the constant map X → {1} ⊂ Z. Note that, for every map f : X → Y of Tychonov spaces,
the diagram

F (X)

αX

F ( f )
F (X)

αY

Z

is commutative.
Let UMET1 denote the category whose objects are ultrametric spaces of diameter � 1 and whose morphisms are nonex-

panding maps.
We recall some definitions concerning monads; see, e.g., [1] for details. Let T be an endofunctor in a category C . By

T n we denote the n-th iteration of T , T n(X) = T (T (. . . T (X) . . .)) (n times). If η : 1C → T and μ : T 2 → T are natural
transformations, then T = (T , η,μ) is called a monad if and only if the diagrams

T
ηT

1TTη

T 2

μ

T 2
μ

T

T 3
μT

Tμ

T 2

μ

T 2
μ

T

are commutative. Then η is called the unity and μ the multiplication of T. The functor T is often referred to as the functorial
part of T.

For an arbitrary monad T = (T , η,μ) in C a pair (X, ξ), where ξ : T X → X is a morphism in C , is called a T-algebra if
and only if the diagrams
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X
ηX

1X

T X

ξ

X

T 2 X
μX

T ξ

T X

ξ

T X
ξ

X

commute.
The morphism ξ : T X → X is then referred to as the structure morphism of the T-algebra (X, ξ).
A morphism f : X → X ′ in C is said to be a morphism of T-algebras (X, ξ) → (X ′, ξ ′) if the diagram

T X

ξ

T f
T X ′

ξ ′

X
f X ′

(1)

is commutative.
It is easy to see that T-algebras and their morphisms form a category. This category is denoted by C T .

3. Main result

Let (X,d) be a metric space. If A ⊂ X and r > 0, then the r-neighborhood of A is the set O r(A) = {x ∈ X | d(x,a) <

r for some a ∈ A}. We write O r(x) if A = {x}.
Let (X,d) be an ultrametric space. Given r > 0, we denote by Fr = F X,r the decomposition of X into the disjoint family

of balls of radius r. We denote by qr = qX,r : X → X/Fr the quotient map. One can regard X/Fr as a discrete topological
space. We will use the following fact which easily follows from elementary properties of ultrametrics: if r < r′ , then the
map qr′ can be factored through qr .

We now suppose that diam(X) � 1. We define the function d̂ : F (X) × F (X) → R as follows:

d̂(u, v) =
{

1, if α(u) �= α(v),

inf{r > 0 | F (qr)(u) = F (qr)(v)}, if α(u) = α(v).

Theorem 3.1. The function d̂ is an invariant continuous ultrametric on the topological group F (X).

Proof. We first note that d̂ is well defined. Let u, v ∈ F (X). If α(u) �= α(v), then there is nothing to prove. Suppose that
α(u) = α(v) and let R > diam(supp(u) ∪ supp(v)). Then there is x ∈ X such that O R(x) ⊃ supp(u) ∪ supp(v) and we easily
see that F (qR)(u) = F (qR)(v) = (qR(x))α(u) . Note that 0 � d̂(u, v) � 1.

Suppose that u �= v . If α(u) �= α(v), then d̂(u, v) = 1. If α(u) = α(v), then a = min{d(x, y) | x, y ∈ supp(u) ∪ supp(v),

x �= y} > 0. If 0 < r < a, then the restriction of the map qr to supp(u) ∪ supp(v) is injective, whence d̂(u, v) > 0.
The symmetry of the function d̂ immediately follows from the definition.
Let us verify the strong triangle inequality for d̂. Let u, v, w ∈ F (X), d̂(u, v) = a, d̂(v, w) = b. If max{a,b} = 1, then the

inequality is obviously satisfied. Thus, we may suppose that max{a,b} < 1 and therefore α(u) = α(v) = α(w). Then, for
every r > max{a,b}, we have F (qr)(u) = F (qr)(v) = F (qr)(w), whence d̂(u, w) � r and we are done.

In order to prove that the obtained ultrametric is left invariant it suffices to show that d̂(uv, uw) � d̂(v, w), for every
u, v, w ∈ F (X). If d̂(v, w) = 1, there is nothing to prove. Otherwise, there is r ∈ (0,1) such that d̂(v, w) < r and therefore
F (qr)(v) = F (qr)(w). Then also

F (qr)(uv) = F (qr)(u)F (qr)(v) = F (qr)(u)F (qr)(w) = F (qr)(uw),

which implies d̂(uv, uw) < r and we obtain the required inequality.
One can similarly prove that d̂ is right invariant and this finishes the proof. �
In the sequel, we tacitly assume that the free group F (X) of an ultrametric space (X,d) is endowed with the metric d̂.
Let f : X → Y be a morphism in the category UMET1. The induced map F ( f ) : F (X) → F (Y ) is defined as follows. If

u ∈ F (X) and u = xε1
1 . . . xεn

n , where x1, . . . , xn ∈ X , εi ∈ {−1,1}, then we let F ( f )(u) = f (x1)
ε1 . . . f (xn)εn ∈ F (Y ).

Proposition 3.2. If f : (X,d) → (Y ,�) is a morphism in UMET1 then the induced homomorphism is also a morphism in UMET1 .

Proof. Suppose that u, v ∈ F (X) and d̂(u, v) � c. If d̂(u, v) = 1, then there is nothing to prove, therefore we assume that
c < 1. Then α(F ( f )(u)) = α(F ( f )(v)) and, for any c′ > c, since the map f is nonexpanding, there exists g : X/Fc′ → Y /Fc′
such that qY ,c′ f = gqX,c′ , whence
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F (qY ,c′)F ( f )(u) = F (qY ,c′ f )(u) = F (gqX,c′)(u) = F (g)F (qX,c′)(u) = F (g)F (qX,c′)(v) = F (qY ,c′)F ( f )(v)

and we see that d̂(F ( f )(u), F ( f )(v)) < c′ . We finally conclude that d̂(F ( f )(u), F ( f )(v)) � c and therefore F ( f ) is nonex-
panding. �

We therefore obtain a functor F in the category UMET1.

Lemma 3.3. Let G be a topological group whose topology is generated by an invariant ultrametric d. If a1, . . . ,an,b1, . . . ,bn ∈ G, then

d(a1 . . .an,b1 . . .bn) � max
{

d(ai,bi)
∣∣ i = 1, . . . ,n

}
.

Proof. This follows from the invariance, strong triangle inequality and induction by n:

d(a1 . . .an,b1 . . .bn) � max
{

d(a1 . . .an,a1 . . .an−1bn),d(a1 . . .an−1bn,b1 . . .bn)
}

� max
{

d(an,bn),d(a1 . . .an−1,b1 . . .bn−1)
}

� max
{

d(ai,bi)
∣∣ i = 1, . . . ,n

}
. �

Proposition 3.4. Let G be a topological group whose topology is generated by an invariant ultrametric d and diam G � 1. Let
ξ : F (G) → G denote the unique homomorphism that extends the identity map of G. Then ξ is nonexpanding.

Proof. For the sake of convenience, denote by ∗ the operation in G . Let u, v ∈ F (X), d̂(u, v) � c. Then, for every c′ > c,
we have F (qc′ )(u) = F (qc′ )(v). Without loss of generality, one may assume that the map qc′ is a retraction onto a subset
of X (thus qc′ (a) ∈ A, for any a ∈ A ∈ Fc′ ). If u = xε1

1 . . . xεn
n , then F (qc′ )(u) = qc′ (x1)

ε1 . . .qc′(xn)εn . By Lemma 3.3, since
d(xi,qc′(xi)) < c′ , for every i = 1, . . . ,n, we see that

d
(
xε1

1 ∗ · · · ∗ xεn
n ,qc′(x1)

ε1 ∗ · · · ∗ qc′(xn)
εn

)
< c′.

Similarly, if v = yη1
1 . . . yηm

m , then

d
(

yη1
1 ∗ · · · ∗ yηm

m ,qc′(y1)
η1 ∗ · · · ∗ qc′(ym)ηm

)
< c′.

Since qc′ (x1)
ε1 . . .qc′(xn)εn = qc′(y1)

η1 . . .qc′ (ym)ηm , we see that

qc′(x1)
ε1 ∗ · · · ∗ qc′(xn)

εn = qc′(y1)
η1 ∗ · · · ∗ qc′(ym)ηm

and therefore

d
(
ξ(u), ξ(v)

) = d
(
xε1

1 ∗ · · · ∗ xεn
n , yη1

1 ∗ · · · ∗ yηm
m

)
� max

{
d
(
xε1

1 ∗ · · · ∗ xεn
n ,qc′(x1)

ε1 ∗ · · · ∗ qc′(xn)εn
)
,d

(
qc′(x1)

ε1 ∗ · · · ∗ qc′(xn)εn , yη1
1 ∗ · · · ∗ yηm

m
)}

< c′.

This implies that d(ξ(u), ξ(v)) � c and the map ξ is nonexpanding. �
We apply this statement in the situation, when G = F (X), for an ultrametric space (X,d) of diameter � 1. Then the

metric d̂ on the group F (X) generates the metric ˆ̂d on F (F (X)) = F 2(X).

Corollary 3.5. The natural map μX : (F 2(X),
ˆ̂d) → (F (X), d̂) is nonexpanding.

Given an ultrametric space (X,d) of diameter � 1, we denote by ηX : X → F (X) the inclusion map. Note that ηX

is nonexpanding. Indeed, given x, y ∈ X ⊂ F (X) with d(x, y) < r, note that α(ηX (x)) = α(ηX (y)) and the inequality
d̂(ηX (x), ηX (y)) < r follows from the fact that qr(x) = qr(y).

One can easily see that η = (ηX ) is a natural transformation of the identity functor in the category UMET1 into the
functor F .

Theorem 3.6. The triple F = (F , η,μ) is a monad on the category UMET1 .

Proof. This is a consequence of the above results as well as well-known algebraic facts concerning the free group functor
(see, e.g., [6]). �
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Proposition 3.7. Let G be a topological group whose topology is generated by an invariant ultrametric and diam G � 1. Then (G, ξ),
where ξ : F (G) → G is the natural map, is an F-algebra. If G ′ is also topological group whose topology is generated by an invariant
ultrametric, diam G � 1, and h : G → G ′ is a nonexpanding homomorphism, then h is a morphism of the F-algebra (G, ξ) into the
F-algebra (G ′, ξ ′), where ξ ′ : F (G ′) → G ′ is the natural map.

Proof. That (G, ξ) is an F-algebra is a consequence of Proposition 3.4 and simple calculations. Also, Proposition 3.2 and
direct verification of the commutativity of the diagram that corresponds to diagram (1) from the definition of morphism of
algebras finishes the proof. �
Proposition 3.8. Let (G,d, ξ) be an F-algebra. Then there exists a unique group structure on G such that d is an invariant ultrametric
on G and the map ξ : F (G) → G is a homomorphism. If (G ′, ξ ′) is also an F-algebra and f : G → G ′ is a morphism of F-algebras, then
f is a homomorphism of the mentioned group structures on G and G ′ .

Proof. We define the binary operation ∗ on G as follows: g ∗ h = ξ(gh). A routine verification (see, e.g., [6]) shows that ∗ is
a group operation on G .

Note that, since both ξ : F (G) → G and ηG : G → F (G) are morphisms in UMET1 and therefore nonexpanding maps, we
obtain that the map ηG (i.e. the natural inclusion of G into F (G)) is an isometric embedding.

Let x, g,h ∈ G , then d̂(xg, xh) = d̂(g,h) and therefore, since the homomorphism ξ is nonexpanding, we see that

d(x ∗ g, x ∗ h) = d
(
ξ(xg), ξ(xh)

)
� d̂(xg, xh) = d̂(g,h) = d(g,h).

This demonstrates that the ultrametric d is left invariant.
The rest of the proof is left to the reader. �
Summing up the above results, we obtain the following result that contains a description of the category F-algebras.

Theorem 3.9. The category UMETF

1 is isomorphic to the category whose objects are groups endowed with the invariant ultrametric of
diameter � 1 and whose morphisms are nonexpanding homomorphisms.

Remark 3.10. The above results have also their counterparts for the case of the functor of free abelian group. The proofs can
be obtained by mutatis mutandis.

4. Remarks and open problems

The results of the present paper can be generalized in different directions.
Let X be a Tychonov space and e ∈ X . Recall that a free topological group (in the sense of Graev) of X is a topological

group with e as the unit element, denoted F (X, e), satisfying the following properties:

(1) X is a subspace of F (X, e);
(2) any continuous map of X into a topological group G that sends e to the unit of G admits a unique extension which is

a continuous homomorphism of F (X, e) into G .

Question 4.1. Is there a counterpart of the above construction for the Graev free topological groups of ultrametric spaces?

A natural question arises of extension of the obtained results over the case of free paratopological groups. Recall that
paratopological groups are groups endowed with a topology that makes the multiplication (but not necessarily the inversion)
continuous.

The existence of the free paratopological groups was proved in [9] by using a Graev type extension of quasi(pseudo)-
metrics from a topological space onto the free group of its underlying set. Recall that a function d : X × X → R+ is
a quasipseudometric on X if satisfies: (1) d(x, x) = 0 and (2) d(x, y) � d(x, z) + d(z, y) (the triangle inequality; note that
the order of arguments is essential). A natural asymmetric counterpart of the notion of ultrapseudometric is that of pseudo-
quasi ultrametric which is obtained when we replace (2) with the property (2’) d(x, y) � max{d(x, z),d(z, y)} (the strong
triangle inequality; again, the order of arguments is essential). This is called a generalized ultrametric in [2].

Question 4.2. Is there a counterpart of the construction described in this paper for the free paratopological groups?

Recall that a uniform structure on a set is called non-Archimedean, if possesses a base consisting of binary relation. Every
such structure can be generated by a family of ultra(pseudo)metrics therefore the construction of the present paper can be
applied to free groups of spaces endowed with non-Archimedean uniform structure.
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Recall the Świerczkowski construction for the invariant metric on the free groups over a metric space (X,d). Given
u, v ∈ F (X), one can find a word w(α1, . . . ,αn) in the letters α1, . . . ,αn (each αi can occur many times in the expression
for w) and a1, . . . ,an,b1, . . . ,bn ∈ X such that w(a1, . . . ,an) = u, w(b1, . . . ,bn) = v . We define the Świerczkowski metric, d̃,
on F (X) by letting

d̃(u, v) = inf

{
n∑

i=1

d(ai,bi)

}
, (2)

where infimum is taken over all the words w and all the choices (ai), (bi).
Suppose that (X,d) is an ultrametric space. We conjecture that, replacing, in the above definition, (2) by

d̃(u, v) = inf
{

max
{

d(a1,b1), . . . ,d(an,bn)
}}

, (3)

we also obtain an invariant ultrametric on the set F (X) that extends the original metric on X .
Note that the Świerczkowski construction can be applied also to a wide class of topological algebras and we expect that

its modification that uses a suitable version of (3) will provide ultrametrization of free topological algebras over ultrametric
spaces.
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