

Triples of infinite iterations of hyperspaces of max-plus compact convex sets

A. Savchenko, M. Zarichnyi

Abstract. Geometry of the infinite iterated hyperspace of compact max-plus convex sets, their completions and compactifications is investigated.

1. Introduction

In their paper [10] H. Toruńczyk and J. West investigated the construction of the iterated hyperspace functor. For a compact metric space X, this construction leads to the metric direct limit X' of the sequence

$$X \to \exp X \to \exp^2 X \to \dots$$

where every map is the singleton embedding $x \mapsto \{x\}$. In particular, they proved that, for any Peano continuum X, the completion X^* of X' is homeomorphic to the separable Hilbert space ℓ^2 .

The paper [14] is devoted to the construction of iterated superextension (the superextension functor was defined by J. de Groot [3]). It turned out that the completed infinite iterated superextension admits a natural compactification, which is the inverse limit of iterated superextensions. This result was considerably generalized by V. V. Fedorchuk [4]. He introduced the notion of perfectly metrizable functor and described the topology of obtained triples comprised of infinite iterations, their completions, and compactifications by means of inverse systems.

As a partial case, Fedorchuk considered the probability measure functor P. The direct and inverse sequences of iterated spaces of probability measures were also considered in [11], [12]. R. Mirzakhanyan [7], [8] investigated the case of the inclusion hyperspace functor.

2010 Mathematics Subject Classification: 52A30, 54B20, 57N20 Keywords: max-plus convex set, hyperspace, Hilbert cube

In [2] Ta Khac Cu proved counterparts of the results from [10] for the case of hyperspace of compact convex subsets in normed spaces.

The aim of this note is to extend results of [2] onto the case of the socalled max-plus convexity (see the definition below).

The authors are indebted to the referee for her/his valuable comments.

2. Preliminaries

All spaces are assumed to be metrizable topological spaces. Let (X, d) be a metric space. By $\exp X$ we denote the hyperspace of a space X, i.e., the set of all nonempty compact subsets in X endowed with the Hausdorff metric d_H :

$$d_{\mathrm{H}}(A, B) = \inf\{\varepsilon > 0 \mid A \subset O_{\varepsilon}(B), \ B \subset O_{\varepsilon}(A)\}.$$

The Hausdorff metric on $\exp^2 X = \exp \exp X$ induced by the (Hausdorff) metric $d_{\rm H}$ will be denoted by $d_{\rm HH}$.

By $Q = [0,1]^{\omega}$ we denote the Hilbert cube. A closed set A in Q is called a Z-set in Q if the identity map of Q can be approximated by maps whose images miss A. A subset $A \subset Q$ is called a Z-skeletoid [1] if $A = \bigcup_{i=1}^{\infty} A_i$, where $A_1 \subset A_2 \subset \ldots$ is a sequence of Z-sets satisfying the condition: for each $\varepsilon > 0$, $n \in \mathbb{N}$ and a Z-set $C \subset Q$ there exist m > n and an autohomeomorphism $\psi_{\varepsilon} \colon Q \to Q$ such that

- (1) $d(\psi_{\varepsilon}, id) < \varepsilon;$
- (2) $\psi_{\varepsilon}|_{C\cap A_n} = \mathrm{id};$
- (3) $\psi_{\varepsilon}(C) \subset A_m$.

(here d denotes a fixed compatible metric on Q). See [1] for the necessary properties of Z-skeletoids in Q.

Recall that a map $f: X \to Y$ is called *soft* [9] provided that for every commutative diagram

$$\begin{array}{ccc}
A & \xrightarrow{\varphi} X \\
\downarrow & & \downarrow f \\
Z & \xrightarrow{\psi} Y
\end{array}$$

such that Z is a paracompact space and A is a closed subset of Z there exists a map $\Phi: Z \to X$ such that $f \circ \Phi = \psi$ and $\Phi|_A = \varphi$.

Let $\mathbb{R}_{\max} = \mathbb{R} \cup \{-\infty\}$ and let τ be a cardinal number. Given $x, y \in \mathbb{R}^{\tau}$ and $\lambda \in \mathbb{R}$, we denote by $x \oplus y$ the coordinate wise maximum of x and y and by $\lambda \odot x$ the vector obtained from x by adding λ to every its coordinate. A subset A in \mathbb{R}^{τ} is said to be \max -plus convex if $\alpha \odot a \oplus \beta \odot b \in A$ for all $a, b \in A$ and $\alpha, \beta \in \mathbb{R}_{\max}$ with $\alpha \oplus \beta = 0$. See, e.g., [6] for the history and applications of max-plus convexity.

A max-plus convex body in \mathbb{R}^n is a max-plus convex set in \mathbb{R}^n which is the closure of its interior.

The hyperspace of all compact max-plus convex subsets of $X \subset \mathbb{R}^{\tau}$ is denoted by $\operatorname{mpcc}(X)$.

Remark that there is a natural max-plus (respectively, max-min) convex structure on the hyperspace $\operatorname{mpcc}(X)$, where X is a max-plus (respectively max-min) convex compact subset of \mathbb{R}^{α} , $1 \leq \alpha \leq \omega$.

Given a subset \mathcal{A} of the hyperspace $\operatorname{mpcc}(X)$, we say that \mathcal{A} is $\operatorname{max-plus}$ convex if, for every $A_1, \ldots, A_n \in \mathcal{A}$ and every $\alpha_1, \ldots, \alpha_n \in [-\infty, 0]$ with $\bigoplus_{i=1}^n \alpha_i = 0$, we have

$$\bigoplus_{i=1}^{n} \alpha_i \odot A_i = \{\bigoplus_{i=1}^{n} \alpha_i \odot a_i \mid a_i \in A_i, \ i = 1, \dots, n\} \in \mathcal{A}.$$

Remark that the set $\bigoplus_{i=1}^{n} \alpha_i \odot A_i$ is easily seen to be an element of the hyperspace $\operatorname{mpcc}(X)$. We denote by $\operatorname{mpcc}^2(X)$ the set of nonempty closed max-plus convex subsets in $\operatorname{mpcc}(X)$.

One can similarly define the iterations $\operatorname{mpcc}^m(X)$, $m \geq 3$.

3. Infinite iterated hyperspaces

Let $\operatorname{mpcc}^2(X)$ denote the set of all nonempty closed convex subsets in $\operatorname{mpcc}(X)$, where X is a compact max-plus convex subspace in \mathbb{R}^n , $n \geq 1$. We endow \mathbb{R}^n with the ℓ_{∞} -metric: if

$$x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n,$$

then $d(x,y) = \max_i |x_i - y_i|$. Note that the union map

$$u_X : \operatorname{mpcc}^2(X) \to \operatorname{mpcc}(X)$$

is well-defined. Indeed, if $A \in \operatorname{mpcc}(X)$ and for any $a, b \in u_X(A)$ there are $A, B \in \mathcal{A}$ such that $a \in A$ and $b \in B$. Since \mathcal{A} is max-plus convex, for any $\alpha, \beta \in \mathbb{R}_{\max}$ with $\alpha \oplus \beta = 0$ we have $\alpha \odot A \oplus \beta \odot B \in \mathcal{A}$ and therefore $\alpha \odot a \oplus \beta \odot b \in u_X(\mathcal{A})$.

Lemma 3.1. For every $a \in X$ and $A \in \operatorname{mpcc}(X)$,

$$d_{\mathrm{HH}}(\{\{a\}\}, \mathcal{A}) = d_{\mathrm{H}}(\{a\}, u_X(\mathcal{A})).$$

Proof. First,

$$d_{\mathrm{HH}}(\{\{a\}\},\mathcal{A}) \ = \ \sup\{d_{\mathrm{H}}(\{a\},A) \mid A \in u_X(\mathcal{A})\} \ \leq \ d_{\mathrm{H}}(\{a\},u_X(\mathcal{A})).$$

On the other hand, if $d_{\mathrm{HH}}(\{\{a\}\}, \mathcal{A}) < r$, then $O_r(a) \supset B$, for every $B \in \mathcal{A}$. Therefore, $O_r(a) \supset u_X(\mathcal{A})$ and thus $d_{\mathrm{H}}(\{a\}, u_X(\mathcal{A})) < r$. This proves the reverse inequality. \square

Proposition 3.2. The map u_X is soft.

Proof. First we show that $u_X^{-1}(A)$ is max-plus convex for any $A \in \operatorname{mpcc}(X)$. If $\mathcal{B}, \mathcal{C} \in u_X^{-1}(A)$ and $\beta, \gamma \in \mathbb{R}_{\max}$ with $\beta \oplus \gamma = 0$, then we have

$$\beta \odot \mathcal{B} \oplus \gamma \odot \mathcal{C} = \{\beta \odot B \oplus \gamma \odot C \mid B \in \mathcal{B}, C \in \mathcal{C}\}.$$

Given $x \in \beta \odot B \oplus \gamma \odot C \in \beta \odot \mathcal{B} \oplus \gamma \odot \mathcal{C}$, we see that there are $b \in B$ and $c \in C$ such that $x = \beta \odot b \oplus \gamma \odot c$. Since $b, c \in A$, we conclude that $u_X(\beta \odot \mathcal{B} \oplus \gamma \odot \mathcal{C}) \subset A$.

Now, if $x \in A$, then there $B \in \mathcal{B}$ and $c \in \mathcal{C}$ such that $x \in B \cap C$. Then

$$x \in \beta \odot B \oplus \gamma \odot C \in \beta \odot \mathcal{B} \oplus \gamma \odot \mathcal{C}.$$

Thus, $u_X(\beta \odot \mathcal{B} \oplus \gamma \odot \mathcal{C}) \supset A$, i.e. finally $u_X(\beta \odot \mathcal{B} \oplus \gamma \odot \mathcal{C}) = A$.

We are going to prove that the map u_X is open. Since the spaces under consideration are compact and metrizable, it suffices to prove that for any $A \in \operatorname{mpcc}^2(X)$ and any sequence (A_i) in $\operatorname{mpcc}(X)$ converging to

$$A = u_X(\mathcal{A})$$

there exists a sequence (A_i) in $\operatorname{mpcc}^2(X)$ converging to A and such that $u_X(A_i) = A_i$, for every $i \in \mathbb{N}$ (see, e.g., [5]).

For any i, let $r_i = d_H(A, A_i)$ and let

$$\mathcal{A}_i = \overline{\operatorname{conv}}_{\operatorname{mp}}(\{A_i \cap \bar{O}_{r_i}(C) \mid C \in \mathcal{A}\})$$

(by $\overline{\operatorname{conv}}_{\operatorname{mp}}$ we denote the closed max-plus convex hull map). Since the map $K \mapsto \bar{O}_{r_i}(K)$ is continuous, we conclude that

$${A_i \cap \bar{O}_{r_i}(C) \mid C \in A} \in \exp \operatorname{mpcc}(X).$$

It is easy to see that $d_{\mathrm{HH}}(\{A_i \cap \bar{O}_{r_i}(C) \mid C \in \mathcal{A}\}, \mathcal{A}) \leq r_i$ and, since the closed max-plus convex hull map is nonexpanding, we obtain that $d_{\mathrm{HH}}(\mathcal{A}_i, \mathcal{A}) \leq r_i$.

Now, by [13, Theorem 3.3] the map u_X is soft as an open map with max-plus convex preimages.

Given a compact convex set X consider the following sequence:

$$X \xrightarrow{s_X} \operatorname{mpcc}(X) \xrightarrow{s_{\operatorname{mpcc}(X)}} \operatorname{mpcc}^2(X) \xrightarrow{s_{\operatorname{mpcc}^2(X)}} \cdot \dots$$

Note that every map in this sequence is an isometric embedding. We denote the metric direct limit of this sequence by $\operatorname{mpcc}^+(X)$ and let $\operatorname{mpcc}^{++}(X)$ be the completion of $\operatorname{mpcc}^+(X)$. In the sequel, we identify the spaces $\operatorname{mpcc}^n(X)$ with the corresponding subspaces of $\operatorname{mpcc}^+(X)$ and $\operatorname{mpcc}^{++}(X)$.

Denote by $\operatorname{mpcc}^{\omega}(X)$ the inverse limit of the sequence

$$\operatorname{mpcc}(X) \longleftarrow^{u_X} \operatorname{mpcc}^2(X) \xleftarrow{u_{\operatorname{mpcc}^2(X)}} \operatorname{mpcc}^3(X) \xleftarrow{u_{\operatorname{mpcc}^3(X)}} \dots$$

Let $\psi_n : \operatorname{mpcc}^{\omega}(X) \to \operatorname{mpcc}^n(X)$ denote the natural projection.

There exists a natural embedding $\theta \colon \operatorname{mpcc}^+(X) \to \operatorname{mpcc}^\omega(X)$. The restriction of this embedding onto the set $\operatorname{mpcc}^n(X)$ is uniquely determined by the maps

$$s_{nm} = s_{\operatorname{mpcc}^{m-1}(X)} \dots s_{\operatorname{mpcc}^n(X)} \colon \operatorname{mpcc}^n(X) \to \operatorname{mpcc}^m(X), \ n < m.$$

We write $\theta = (\theta_n)$, where $\theta_n = \psi_n \theta$.

The following proposition is proved in [4] in general form; in turn, this is a generalization of a result from [14].

Proposition 3.3. The (unique) extension $\bar{\theta}$: mpcc⁺⁺(X) \rightarrow mpcc^{ω}(X) of the map θ is an embedding.

Proof. Similarly as in [10, Lemma 3], one can prove that the map $\bar{\theta}$ is injective. We are going to show that the map $\bar{\theta}^{-1}$ is continuous. To this end, for any $x \in \operatorname{mpcc}^{++}(X)$ and $\varepsilon > 0$ one should find a neighborhood U of $\bar{\theta}(x)$ in $\operatorname{mpcc}^{\omega}(X)$ such that

$$\bar{\theta}^{-1}(U) \subset B_{\varepsilon}(x). \tag{3.1}$$

We write $\bar{\theta} = (\bar{\theta}_i)$, where $\bar{\theta}_i = \psi_i \circ \bar{\theta}$. Again, similarly as in [10, Lemma 3], the sequence $(\bar{\theta}_i(x))$ converges to x and therefore there exists n such that

$$d(\bar{\theta}_k(x), x) < \varepsilon/4 \text{ for all } k \ge n.$$
 (3.2)

Put

$$V = O_{\varepsilon/4}(\bar{\theta}_n(x))) \subset \operatorname{mpcc}^{n+1}(X), \qquad U = \psi_{n+1}^{-1}(V).$$

Let us verify the inclusion

$$\operatorname{mpcc}^+(X) \cap \bar{\theta}^{-1}(U) \subset O_{3\varepsilon/4}(x).$$
 (3.3)

Let $y \in \operatorname{mpcc}^+(X) \cap \bar{\theta}^{-1}(U)$. Then there exists $k \geq n+1$ such that $y \in \operatorname{mpcc}^k(X) \subset \operatorname{mpcc}^+(X)$. Since $y \in \bar{\theta}^{-1}(U)$, we have $\psi_{n+1}(y) \in V$. Since

$$\varepsilon/2 > d(\psi_{n+1}(y), \bar{\theta}_n(x)),$$

from (3.2) and Lemma 3.1 it follows that

$$d(y,x) \le d(y,\bar{\theta}_n(x)) + d(\bar{\theta}_n(x),x) < \varepsilon/2 + \varepsilon/4 + 3\varepsilon/4.$$

Therefore, the inclusion in (3.3) is verified. Since $\operatorname{mpcc}^+(X)$ is dense in $\operatorname{mpcc}^{++}(X)$, from (3.3) we obtain that $\bar{\theta}^{-1}(U) \subset \overline{B_{3\varepsilon/4}(x)} \subset O_{\varepsilon}(x)$.

Let $Q = [-1, 1]^{\omega}$ be the Hilbert cube, $s = (-1, 1)^{\omega}$ be its pseudointerior and rint $Q = \{(x_i) \in Q \mid \sup_i |x_i| < 1\}$ be its radial interior.

Theorem 3.4. Let X be a compact max-plus convex body in \mathbb{R}^n . Then the triple $(\operatorname{mpcc}^{\omega}(X), \operatorname{mpcc}^{++}(X), \operatorname{mpcc}^{+}(X))$ is homeomorphic to the triple $(Q, s, \operatorname{rint} Q)$.

Proof. Consider the following metric ϱ on $\operatorname{mpcc}^{\omega}(X)$,

$$\varrho((x_i), (y_i)) = \sum_{i=1}^{\infty} \frac{d(x_i, y_i)}{2^i},$$

where

$$(x_i), (y_i) \in \operatorname{mpcc}^{\omega}(X) \subset \prod_{i=1}^{\infty} \operatorname{mpcc}^i(X).$$

For every $i \in \mathbb{N}$ and j > i, the maps

$$q_{ij} = \operatorname{mpcc}(s_{i-1,j-1}) \colon \operatorname{mpcc}^{i}(X) \to \operatorname{mpcc}^{j}(X)$$

determine the map $q_i : \operatorname{mpcc}^i(X) \to \operatorname{mpcc}^\omega(X)$.

We first show that the pair $(\operatorname{mpcc}^{\omega}(X), \operatorname{mpcc}^{++}(X))$ is homeomorphic to the pair (Q, s). By [1, Theorems 2.3 and 3.3, Chapter V], it suffices to prove that the set

$$B = \operatorname{mpcc}^{\omega}(X) \setminus \operatorname{mpcc}^{++}(X)$$

is a Z-skeletoid in $\operatorname{mpcc}^{\omega}(X)$. Note first that the set B is σ -compact as the complement to the topologically complete set $\operatorname{mpcc}^{++}(X)$. Note also that every compact subset $K \subset B$ is a Z-set in $\operatorname{mpcc}^{\omega}(X)$. Indeed, the sequence of retractions $\psi_n \colon \operatorname{mpcc}^{\omega}(X) \to \operatorname{mpcc}^n(X)$ converges uniformly to the identity map of $\operatorname{mpcc}^{\omega}(X)$ and the image of every ψ_n misses K. By [1, Theorems 3.2, Chapter V], in order to show that B is a Z-skeletoid it suffices to find a Z-skeletoid in B. In turn, it suffices to find a sequence a sequence (L_i) of compact subspaces in B such that:

- (1) every L_i is homeomorphic to Q;
- (2) every L_i is a Z-set in Q_{i+1} ;
- (3) for every *i* there is a retraction r_i : $\operatorname{mpcc}^{\omega}(X) \to L_i$ and the sequence (r_i) of retractions uniformly converges to the identity map.

The construction of such a sequence (L_i) is analogous to that in the proof of [4, Theorem 4], therefore we drop the details. We suppose that X is a max-plus convex body in \mathbb{R}^n , $n \geq 2$. Also, we suppose that diam $X \leq 1$. Then diam $\operatorname{mpcc}^{\omega}(X) \leq 1$.

By K_1 we denote the set

$$\{A \in \operatorname{mpcc}(X) \mid \text{ there is } x \in A \text{ such that } x + (\varepsilon, \dots, \varepsilon) \in A\},\$$

where $\varepsilon > 0$. Clearly, K_1 is max-plus convex and if ε is small enough then K_1 is nonempty and can be made as close to $\operatorname{mpcc}(X)$ as we wish. We require that there is a retraction r_1 of $\operatorname{mpcc}(X)$ onto K_1 which is 1-close to the identity. Let $L_1 = q_1(K_1)$.

Assuming that K_i , $i \leq p$, are already constructed we let

$$K_{p+1} = \{ A \in \operatorname{mpcc}^p(X) \mid \text{ there is } x \in A \text{ such that } x + (\varepsilon, \dots, \varepsilon) \in A \},$$

where $\varepsilon > 0$ is chosen small enough that

$$\operatorname{mpcc}(s_{\operatorname{mpcc}^{p-1}(X)})(K_p) \subset K_{p+1}$$

and there is a retraction

$$r_{p+1} \colon \operatorname{mpcc}^{p+2}(X) \to K_{p+1}$$

which is 2^{-p} -close to the identity. Let $L_{p+1} = q_{p+1}(K_{p+1})$.

Thus, $L = \bigcup_{i=1}^{\infty} L_i$ is a Z-skeletoid in $\operatorname{mpcc}^{\omega}(X)$. We conclude that the pair $(\operatorname{mpcc}^{\omega}(X), \operatorname{mpcc}^{++}(X))$ is homeomorphic to (Q, s).

Similarly, one can prove that $\operatorname{mpcc}^+(X)$ is a Z-skeletoid in $\operatorname{mpcc}^\omega(X)$. Therefore, the pair $(\operatorname{mpcc}^\omega(X), \operatorname{mpcc}^+(X))$ is homeomorphic to $(Q, \operatorname{rint} Q)$. We now apply [4, Theorem 2] to finish the proof.

4. Remarks and open questions

It is plausible that the main result can be extended to the case of all max-plus convex subsets of \mathbb{R}^{α} , $\alpha \leq \omega$, of dimension ≤ 1 .

We also conjecture that there is a counterpart of the main result for the hyperspace of max-min convex sets in \mathbb{R}^{τ} . Given $\lambda \in \mathbb{R}_{\max} \cup \{\infty\}$ and $x = (x_{\alpha}) \in \mathbb{R}^{\tau}$, we define $\lambda \otimes x = (\min\{\lambda, x_{\alpha}\})$. A subset A in \mathbb{R}^{τ} is said to be \max -min convex if $\alpha \otimes a \oplus b \in A$ for all $a, b \in A$ and $\alpha \in \mathbb{R}_{\max}$.

References

- C. Bessaga and A. Pełczyński. Selected topics in infinite-dimensional topology, volume 58 of Monografie Matematyczne. Warsaw: PWN, 1975.
- [2] Ta Khac Cu. Direct limits which are hilbert spaces. Acta Math. Vietnam., 14(2):67-73, 1989.
- [3] J. de Groot. Superextensions and supercompactness. In Proc. I. Intern. Symp. on Extension Theory of Topological Structures and its Applications, pages 89–90. VEB Deutscher Verlag Wiss., Berlin, 1967.
- [4] V. V. Fedorchuk. Triples of infinite iterates of metrizable functors. Mathematics of the USSR-Izvestiya, 36(2):411-433, 1991.
- [5] V. V. Fedorchuk and V. V. Filippov. General Topology. Basic Constructions fin Russian. Izd. Mosk. Univ., Moscow, 1988.
- [6] S. Gaubert and R. Katz. Max-plus convex geometry. In Renate A. Schmidt, editor, Relations and Kleene Algebra in Computer Science, volume 4136 of Lecture Notes in Computer Science, pages 192–206, 2006.
- [7] R. E. Mirzakhanyan. On infinite iterations of the functor of inclusion hyperspace. Vestn MGU. Mat., Mekh., (6):14–17, 1988.
- [8] R. E. Mirzakhanyan. On the functor of completed iterated inclusion hyperspace. Vestn MGU. Mat., Mekh., (2):75-77, 1989.
- [9] E. V. Shchepin. Functors and uncountable powers of compacta. Uspekhi mat. nauk, 36:3–62, 1981.
- [10] H. Toruńczyk and J. West. A hilbert space limit for the iterated hyperspace functor. Proc. Amer. Math. Soc., 89:329–335, 1983.

- [11] A. M. Vershik. Theory of decreasing sequences of measurable partitions. St. Petersburg Math. J., 6(4):705-761, 1994.
- [12] A. M. Vershik. Kantorovich metric: Initial history and little-known applications. *Journal of Mathematical Sciences*, 133(4):1410–1417, 2006.
- [13] M. Zarichnyi. Michael selection theorem for max-plus compact convex sets. Topology Proceedings, 31(2):677–681, 2007.
- [14] M. M. Zarichnyi. General topology, volume 167, chapter Iterated superextensions, pages 45–59. Moscow University Press, 1986.

Received: April 10, 2016, accepted: May 18, 2016.

Aleksandr Savchenko

Kherson State Agrarian University, 23 Rozy Liuksemburg Str., 73006 Kherson, Ukraine

Email: savchenko1960@rambler.ru

Mykhailo Zarichnyi

Department of Mechanics and Mathematics, Lviv National University, Universytetska Str. 1, 79000 Lviv, Ukraine

 $\it Email: mzar@litech.lviv.ua$