

KHERSON STATE UNIVERSITY

Faculty of Computer Science, Physics and Mathematics
Department of Computer Science and Software Engineering

Master’s Degree Programme in Software Engineering

Development and audit of smart contracts of the

educational platform

Supervisor:

Doctor of Physical and Mathematical

sciences,

Prof. Volodymyr Peschanenko

Reviewer:

PhD (Information Technology),

CEO of GARUDA.AI

Yuliia Tarasich

Author:

Master’s student

Konnova Olga

Kherson – Ivano-Frankivsk – 2023

2

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

 ХЕРСОНСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

Факультет комп’ютерних наук, фізики та математики

Кафедра комп’ютерних наук та програмної інженерії

РОЗРОБКА ТА АУДИТ СМАРТ-КОНТРАКТІВ ОСВІТНЬОЇ

ПЛАТФОРМИ

Кваліфікаційна робота (проєкт)

на здобуття ступеня вищої освіти «магістр»

Виконала: здобувачка 2 курсу 241М

групи

Спеціальності 121 Інженерія

програмного забезпечення

Освітньо-професійної (наукової)

програми Інженерія програмного

забезпечення

Коннова Ольга Владиславівна

Керівник: доктор фізико-

математичних наук, професор

Песчаненко Володимир Сергійович

Рецензент: докторка філософії

(Інформаційні технології),

докторантка Інституту кібернетики

імені В.М.Глушкова НАН України,

директорка ТОВ «ГАРУДА.АІ»

Тарасіч Юлія

Херсон – Івано-Франківськ – 2023

3

АНОТАЦІЯ

Онлайн освітні платформи почали з'являтися досить давно, але вони

практично не розглядалися як варіант повної заміни традиційного офлайн-

навчання у школах та університетах. Однак пандемія Covid-19 повністю

змінила цю ситуацію. Студенти почали вчитися віддалено та виникла

потреба в інструментах, які могли б підтримати цей процес. Однією з

головних переваг освітніх онлайн-платформ є те, що вони дозволяють

студентам здобувати якісну освіту незалежно від географічного положення

та фізичного доступу до навчальних закладів. Тому не лише школярі чи

студенти, а й працюючі люди, які бажають освоїти нову спеціальність чи

підвищити свою кваліфікацію, можуть навчатися у зручний для них час.

Перехід до онлайн освіти, зростання освітніх платформ та збільшення

обсягу освітніх даних створюють серйозні проблеми, такі як безпека

даних, автентифікація та управління фінансами. Блокчейн може стати

потужним інструментом підвищення надійності та безпеки платформ

онлайн-навчання. Він забезпечує незмінність даних, захищає їх від

кібератак, забезпечує прозорість та безпеку для всіх учасників системи. Це

може допомогти зміцнити довіру до онлайн-освіти та зробити її більш

доступною та надійною для всіх. І одним із важливих компонентів

блокчейну є смарт-контракти.

 Смарт-контракти відкривають нові освітні можливості,

перетворюючи традиційні системи навчання на безпечне та прозоре

середовище. Однак із зростанням використання смарт-контрактів у

додатках бізнес-процесів виникає необхідність перевірки безпеки. Смарт-

контракти ґрунтуються на програмному коді, тому можуть містити

помилки, що призводять до некоректного виконання контракту. Оскільки

сфера використання смарт-контрактів часто пов'язана із фінансами, ціна

таких помилок може бути досить високою.

4

Актуальність дослідження полягає у необхідності створення

надійних та безпечних смарт-контрактів для підтримки освітнього

процесу, реєстрації студентів, визначення їх успішності, розподілу

фінансових ресурсів та багатьох інших аспектів освіти. Частиною мети

цього проекту є перевірка розроблених смарт-контрактів на наявність

вразливостей, коректність виконання та відповідність специфікаціям.

Зв’язок роботи з науковими програмами, планами, темами. Тема

роботи знаходиться у сфері наукових досліджень кафедри комп'ютерних

наук та програмної інженерії: «Кібербезпека та інсерційне моделювання»

(проф. Песчаненко В.С.) та «Криптоекономіка та блокчейн» (проф.

Песчаненко В.С., Кобець В.М.).

Об’єкт дослідження – смарт-контракти для освітньої платформи.

Предмет дослідження – процес розробки та аудиту смарт-контрактів.

Мета дослідження: розроблення смарт-контрактів, які регулюють

основні бізнес-процеси освітньої платформи. Проведення аудиту смарт-

контрактів з метою виявлення потенційних вразливостей, помилок у

логіці, а також перевірка відповідності вимогам.

Досягнення мети дослідження передбачає розв’язання таких завдань:

● Огляд можливостей та переваг використання блокчейну та смарт-

контрактів в освітній діяльності.

● Визначення основних вимог до смарт-контрактів освітньої

платформи та бізнес-процесів, які можуть керуватися смарт-

контрактами.

● Вибір блокчейн платформи та інструментів для реалізації смарт-

контрактів.

● Реалізація смарт-контрактів на мові програмування TEAL на

блокчейні Algorand.

5

● Аналіз коду смарт-контрактів для виявлення можливих вразливостей

та хибної поведінки.

Публікації. О.В. Співаковський , М. О. Вінник, М. Ю.

Полторацький, О. В. Коннова. К84 Співаковський О.В. Криптоекономіка.

Навч.- метод. посіб. / О.В. Співаковський, М.О. Вінник, М.Ю.

Полторацький, О.В. Коннова. – Херсон: Херсонський державний

університет, 2023. – 162 с.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обґрунтовано актуальність теми, визначено об’єкт та

предмет дослідження, мету та завдання.

У першому розділі – “Overview of blockchain technology and the

possibilities of its use in education” (Огляд технології блокчейн та

можливостей її використання в освіті) – було розглянуто поняття блокчейн

і смарт-контракти. Ми описали принципи роботи цих технологій, а також

переваги, які вони надають. Також ми аналізували можливості

використання блокчейну та смарт-контрактів в освіті. Основні способи

використання блокчейну в освіті:

● зберігання академічних даних;

● створення курсів з використанням блокчейну;

● стимулювання студентів та викладачів для отримання кращих

результатів;

● захист авторських прав і антиплагіат.

Ми описали покращення, які ці технології можуть внести в

навчальний процес. Серед основних переваг, які дає використання смарт-

контрактів у навчальному процесі:

● автоматизація рутинних процесів;

6

● забезпечення високого рівня довіри між учасниками освітнього

процесу;

● зменшення ризику помилок, пов'язаних з ручною працею;

● забезпечення високого рівня захисту.

У другому розділі – “Determination of smart contract requirements

and selection of tools” (Визначення вимог до смарт-контрактів та вибір

інструментів) – було визначено основні ролі користувачів на освітній

платформі та дії кожного з них. Слід зазначити, що увага була приділена

тим діям, які регулюватимуться смарт-контрактами. Докладно описано

процес створення та розміщення курсу на платформі.

Ми також визначили платформу та інструменти для розробки смарт-

контрактів для освітньої платформи. Таким чином, у якості блокчейн-

платформи було обрано Algorand. Ми розглянули особливості смарт-

контрактів Algorand, а також їх різновиди: смарт-контракти без збереження

та зі збереженням стану, а також основні відмінності між ними. Нами було

розглянуто особливості мови програмування для розробки смарт-

контрактів Algorand - TEAL (Transaction Execution Approval Language).

У третьому розділі – “Implementation and audit of smart contracts”

(Реалізація та аудит смарт-контрактів) – нами було детально розглянуто

процес реалізації смарт-контрактів із збереженням стану на TEAL та їх

взаємодію з клієнтським додатком за допомогою Algorand JS SDK.

Описано структуру смарт-контрактів та основні методи їх роботи. У ході

роботи було створено смарт-контракти для управління курсами та

управління винагородами.

Додаток CourseManagement необхідний для управління основними

процесами на платформі, пов'язаними з курсом: створенням курсу,

розрахунком його вартості, реєстрацією студентів на курс, збереженням

балів студентів, розрахунком суми стипендії для студентів та винагороди

для викладачів. Смарт-контракт RewardsManagement контролює розподіл

7

винагород серед користувачів. Він також функціонує як рахунок умовного

депонування.

Також ми описали основні вразливості, які можуть існувати у коді

смарт-контрактів, створених на TEAL. Ми розглянули основні підходи

щодо верифікації коду смарт-контрактів. У цій роботі ми перевірили

розроблені смарт-контракти на наявність описаних вразливостей. Ми

також використали інструмент статичного аналізу коду смарт-контрактів

на TEAL – Tealer, який дозволяє нам шукати вразливості у коді контракту.

ВИСНОВКИ

У цій роботі ми розглянули можливості використання блокчейну та,

зокрема, смарт-контрактів, в освіті. Ми проаналізували особливості цих

технологій, а також переваги, які вони надають.

Це дослідження було здійснено для розгляду процесу розробки

смарт-контрактів для освітньої платформи на основі блокчейну. Смарт-

контракти, що розробляються, дозволяють керувати процесом реєстрації

студентів на курс, зберігати їх бали в блокчейні, розраховувати розмір

стипендій для студентів та винагород для викладачів, а також розподіляти

інші фінансові винагороди серед користувачів платформи.

У ході нашої роботи ми визначили основні ролі користувачів на

освітній платформі та дії кожного з них, виділивши варіанти використання,

які регулюються смарт-контрактами.

Algorand був обраний у якості блокчейн-платформа для розробки

смарт-контрактів. Це один з найшвидших блокчейнів, який надає

розширені можливості створення смарт-контрактів з низькими комісіями

за транзакції. У якості мови для написання коду смарт-контракту для

освітньої платформи було обрано TEAL.

Ми розробили два смарт-контракти: CourseManagement та

RewardsManagement. Додаток CourseManagement управляє основними

8

процесами на платформі, пов'язаними з курсом: створенням курсу,

розрахунком його вартості, реєстрацією студентів на курс, збереженням

балів студентів у блокчейні, розрахунком суми стипендії для студентів та

винагороди для викладачів. Програма RewardsManagement контролює

розподіл фінансових винагород серед користувачів платформи. Він також

функціонує як рахунок умовного депонування.

У цій роботі ми описали основні вразливості у смарт-контрактах,

написаних мовою TEAL. Ми проаналізували причини їх виникнення та

можливості усунення. Розроблені смарт-контракти також протестували на

наявність описаних вразливостей. Ми використали інструмент статичного

аналізу коду для смарт-контрактів на TEAL — Tealer, який дозволяє

шукати вразливості в коді контракту.

9

LIST OF ABBREVIATIONS

P2P network — Peer-to-peer network

PoW — Proof of Work consensus mechanism

PoS — Proof of Stake consensus protocol

PPoS — Pure Proof-of-Stake consensus algorithm used by Algorand blockchain

AVM — Algorand Virtual Machine

ASA — Algorand Standart Asset

ASC — Algorand Smart Contract

DLT — Distributed Ledger Technology

TEAL — Transaction Execution Approval Language

SDK — Software Development Kit

10

CONTENT

LIST OF ABBREVIATIONS ... 9

INTRODUCTION ... 11

CHAPTER 1. Overview of blockchain technology and the possibilities of its

use in education ... 14

1.1 Blockchain and smart contracts ... 14

1.2 Analysis of blockchain use cases in education ... 21

CHAPTER 2. Determination of smart contract requirements and selection

of tools ... 27

2.1 Requirements for the educational platform and design .. 27

2.2 Tools for smart contracts implementation .. 39

CHAPTER 3. Implementation and audit of smart contracts ... 44

3.1 Implementation of smart contracts for the educational platform .. 44

3.2 Smart contracts code audit ... 67

CONCLUSIONS ... 78

REFERENCES .. 80

11

INTRODUCTION

Online educational platforms began to appear quite a long time ago, but

they were almost not considered as an option to completely replace traditional

offline education in schools and universities. However, the Covid-19 pandemic

has completely changed this situation. Students began to study remotely and

there was a need for tools that could support this process. One of the main

advantages of online educational platforms is that they allow students to receive

quality education regardless of geographic location and physical access to

educational institutions. Therefore, not only schoolchildren or students, but also

working people who would like to learn a new specialty or improve their

qualifications can study at a time convenient for them.

The shift to online and distance education, the growth of educational

platforms and the increase in the amount of educational data pose serious

challenges such as data security, authentication, and financial management.

Blockchain can be a powerful tool to improve the reliability and security of

online learning platforms. It ensures data immutability, protects it from cyber

attacks, and ensures transparency and security for all system participants. This

can help build trust in online education and make it more accessible and reliable

for everyone. And one of the important components of the blockchain is smart

contracts.

 Smart contracts open up new educational opportunities, turning traditional

learning systems into secure and transparent environments. However, with the

growing use of smart contracts in business process applications, there is a need

for security validation. Smart contracts are based on software code, so they can

contain errors that lead to incorrect execution of the contract. Since the area of

use of smart contracts is often related to finance, the cost of such errors can be

quite high.

Relevance of the study lies in the need to create reliable and secure smart

contracts to support the educational process, student registration, determining

12

their success, distribution of financial resources, and many other aspects of

education. Part of the aim of this project is to check the developed smart

contracts for vulnerabilities, correct execution, and compliance with

specifications.

The topic of our work is within the scope of scientific research of the

Department of Computer Sciences and Software Engineering: "Cybersecurity

and Insertion Modeling" (Prof. V.S. Peschanenko) and "Cryptoeconomics and

Blockchain" (Prof. V.S. Peschanenko, Prof. V. M. Kobets).

Object of study – smart contracts for the educational platform.

Subject of study – the process of developing and auditing smart contracts.

The purpose of the study – development of smart contracts that regulate

the main business processes of the educational platform. Auditing smart

contracts to identify potential vulnerabilities, logic errors, and compliance

checks.

Achieving the purpose of the study involves solving the following tasks:

● An overview of the possibilities and advantages of using blockchain and

smart contracts in educational activities.

● Defining the basic requirements for smart contracts of the educational

platform and business processes that can be managed by smart contracts.

● Choosing a blockchain platform and tools for implementing smart

contracts.

● Implementation of smart contracts in the TEAL programming language

on the Algorand blockchain.

● Analysis of smart contract code to identify possible vulnerabilities and

misbehavior.

13

Research methods. The following methods were used to reach the

purposes of the study: informational and logical analysis, case study,

description, modeling, and experiment.

Publications. Spivakovsʹkyy O.V., Vinnyk M. O., Poltoratsʹkyy M. YU.,

Konnova O. V. Kryptoekonomika: navch.- metod. posib. Kherson:

Khersonsʹkyy derzhavnyy universytet, 2023. – 162 s. (Spivakovskyi O.V.,

Vinnyk M.O., Poltoratskyi M.Yu., Konnova O.V. Cryptoeconomics: Textbook.

Kherson: Kherson State University, 2023. – 162 p.)

KonnovaO., LetychevskyiO., PeschanenkoV., & PoltoratskyiM. (2024).

AN ALGEBRAIC APPROACH TO THE VERIFICATION OF SMART

CONTRACTS IN TEAL. Journal of Information Technologies in Education

(ITE), (54).

Structure of the study. The thesis consists of the list of abbreviations,

introduction, three chapters, conclusion, and list of sources.

14

CHAPTER 1

OVERVIEW OF BLOCKCHAIN TECHNOLOGY AND THE

POSSIBILITIES OF ITS USE IN EDUCATION

1.1 Blockchain and smart contracts

Blockchain has introduced many new opportunities to the world and

provided huge benefits through increased transparency, distributed ledgers and

decentralization. This technology was first described by a group of researchers

in 1991 and was put into practice only in 2008, when an unknown user under the

pseudonym Satoshi Nakamoto published a technical description of his

cryptocurrency protocol [1]. This technology has opened up new opportunities

to get rid of intermediaries and ensure a high level of security in many areas of

activity.

1.2.1 Blockchain

In the Cryptopedia glossary, the definition of blockchain is as follows “A

blockchain is a public ledger of transactions that is maintained and verified by a

decentralized, peer-to-peer (P2P) network of computers that adhere to a

consensus mechanism to confirm data. Each computer in a blockchain network

maintains its own copy of the shared record, making it nearly impossible for a

single computer to alter past transactions or for malicious actors to overwhelm

the network. Sufficiently decentralized blockchains do not rely on centralized

authorities or intermediaries to transact globally, securely, verifiably, and

quickly, making technology like cryptocurrency possible.” [2]

The blockchain concept has certain features:

● Decentralization: All data stored inside the blockchain does not belong to

one person. There is no single point of control or failure, which in turn

makes the blockchain more secure and resilient to attacks or data leakage.

15

● Transparency: All data stored on the blockchain is visible to everyone

who is part of the network. This simplifies the tracking and verification of

transactions and ensures their accuracy.

● Immutability: All data within the blockchain cannot be changed thanks to

the cryptographic hash function. This “creates a permanent record of all

transactions that can be verified by anyone with access to the blockchain

network” [3].

Data stored on the blockchain is secure and immutable, thanks to

cryptography. Each block is referenced by a unique character string generated

by a cryptographic hash function. Each block is linked to the previous block

(known as the parent block) by storing the parent's hash (Pic. 1.1). Therefore,

any changes made to the contents of a block will change the hash of the block.

Thus, falsifying data in any block of the blockchain will change the hash of all

subsequent blocks.

Pic. 1.1 — Link between blocks

In addition, all transactions in a block are verified and agreed upon by a

consensus mechanism, ensuring that every transaction is valid and accurate.

Therefore, the user cannot change transaction records.

16

A consensus algorithm is a mechanism that is used in blockchain systems

to agree on changes made to the distributed ledger. It ensures that none of the

network participants can arbitrarily add, delete, or change the data contained in

the registry.

At the moment, there are several consensus algorithms. The two most

common ones are:

● Proof-of-Work (PoW) requires the participant to prove that work has been

done and provide proof in the form of a puzzle solution. This proof gives

the node the right to add a block for the transaction to the blockchain.

Typically, a proof of work involves solving a mathematically complex

puzzle using cryptographic techniques. Whoever solves the puzzle first

gives the proof, and after that, the block will be added. This process is

called mining and requires large computing resources, i.e., a long

processing time and high-power consumption of computers. This

mechanism is used by Bitcoin and Dogecoin for their BTC and DOGE

currencies.

● Proof-of-Stake (PoS) requires the participating validator to have a certain

percentage of the stake in the network. It is believed that this node is

interested in maintaining the reliability of the network. This algorithm is

used by Cardano, Solana, and Avalanche for their ADA, SOL, and AVAX

currencies, respectively.

Other consensus algorithms include Delegated Proof-of-Stake, Proof-of-

Importance, Proof-of-Activity, Proof-of-Burn, Proof-of-Capacity and others.

● Advantages and disadvantages of blockchain

Considering the principle of operation of the blockchain as well as its

features, we can highlight the following advantages of this technology:

17

● Ensuring a high level of security: the three principles of blockchain —

cryptography, decentralization, and consensus — allow developers to

provide a secure system that is almost impossible to interfere with. Data is

also stored in blocks on the computers of many users. This reduces the

risk of hacker attacks as well as technical failures.

● Ensuring independence by eliminating intermediaries: in the blockchain

network, transactions occur without intermediaries, as well as third

parties; that is, the blockchain is not managed or controlled by a bank or

government, which means there is no possibility of interference in the

process.

● Ensuring transparency: blockchain transactions are typically public and

visible to all network participants. This provides a high level of

transparency and allows participants to verify and confirm transactions.

● Ability to create smart contracts: blockchain allows developers to create

smart contracts that are automatically executed when specified conditions

are met. This can simplify many business processes and make them more

transparent.

Along with a lot of advantages, blockchain technology still has some

limitations:

● Difficulty in changing data: Once data is added, it is quite difficult to

modify it. Although stability is considered an advantage of blockchain,

there are situations in which it can be a disadvantage.

● Limited scalability: public blockchains such as Bitcoin or Ethereum can

experience limited throughput and latency when the network is heavily

loaded.

● Lack of universal standards of legal regulation: many countries have not

yet defined clear norms and rules regarding the use of blockchain

technologies and cryptocurrencies. Also, smart contracts that function on

18

the blockchain may have legal significance, but laws do not always take

their specifics into account.

● Environmental issues: Some blockchains, especially Bitcoin, require

significant computing resources, resulting in serious carbon emissions and

environmental impacts.

1.2.2 Smart contracts

One of the main components of the blockchain are smart contracts. The

concept of smart contracts was first introduced by Nick Szabo in the 1990s.

However, they became widespread with the advent of the Ethereum platform,

the concept of which was described in 2013.

“Smart contracts are simply programs stored on a blockchain that run

when predetermined conditions are met. They typically are used to automate the

execution of an agreement so that all participants can be immediately certain of

the outcome, without any intermediary’s involvement or time loss.” [4] It is

thanks to smart contracts that the decentralized nature of the network is ensured.

Each smart contract has two components:

● Code: A set of rules and functions programmed into the contract. It

defines how the smart contract should be executed and under what

conditions. It defines the functionality of the smart contract and often

cannot be changed once it is added to the blockchain.

● State: A set of data and variables that are stored on the blockchain and

describe the current state of this contract. This may include account

balances, timestamps, other contract or account addresses, transaction

IDs, and other information.

Smart contracts are developed using programming languages. The choice

of a specific language depends on the selected blockchain. For example, the

19

Solidity and Vyper languages are used to develop smart contracts for the

Ethereum blockchain, and the Rust programming language is used for the

Solana, NEAR, or Polkadot blockchains. Other languages for developing smart

contracts include C++, JavaScript, Yul, Python, and others. Regardless of the

blockchain and programming language, the main goal of smart contracts is to

ensure the security and transparency of processes. That is why it is important

that the contract code does not contain vulnerabilities and is executed in

accordance with the requirements.

There are also several types of smart contracts:

● Smart Legal Contracts (SLC). These contracts combine legal logic with

the technicalities of blockchain and smart contracts to provide more

secure, reliable, and efficient agreements between parties. They are

legally binding and require the parties to fulfill their contractual

obligations. Smart legal contracts can be used to perform cryptocurrency

transactions as well as to register real estate or other applications. Such

smart contracts underlie DeFi projects, cryptocurrency exchanges, and

NFT marketplaces.

● Decentralized Autonomous Organizations (DAO). These are

organizations that are managed by smart contracts on the blockchain and

operate autonomously, without centralized control. The rules of the

organization and the rights of participants are encoded in smart contracts

that cannot be changed without the consent of other participants.

● Application Logic Contracts (ALC). ALCs contain application code that

enables communication between different devices. They allow interaction

and communication between different devices, for example, through the

integration of the Internet of Things (IoT) with blockchain technology.

ALCs are an important component of multifunctional smart contracts and

mostly operate within a control program.

20

Smart contracts have huge potential in many areas of activity. They help

to automate many business processes, get rid of intermediaries in transactions,

and reduce the cost of human labor. The following main areas of use of smart

contracts can be highlighted:

● Cryptocurrency and Finance: Smart contracts are used to create and

manage cryptocurrencies and tokens.

● Real estate: Smart contracts can be used to automate the processes of

buying, selling, and renting real estate, as well as to store and manage

property documents.

● Medicine and healthcare: Smart contracts can be used to manage access to

medical data, medical prescriptions, etc.

● Voting: Smart contracts can ensure security and prevent vote fraud during

elections and voting.

Also, one of the main sectors where smart contracts can be useful is

education. Next, we will consider in more detail the possibilities of using

blockchain, and smart contracts in particular, in education. As well as the

benefits that this approach will bring to this area.

21

1.2 Analysis of blockchain use cases in education

Education in the classic form with offline classes in educational

institutions still remains the main approach to teaching, but the Covid-19

pandemic and the war in Ukraine have shown that online education can almost

completely replace offline classes at school or university. Online schools and

platforms for online courses are becoming an increasingly popular and

sometimes even necessary alternative to offline education. However, such online

educational platforms can also become a supplement and a good tool for already

existing educational institutions.

Traditional offline education at a school or university has many

advantages but also certain disadvantages:

● Geographic restrictions: Students must be physically located at the

university or school, which leads to restrictions in the choice of

educational institutions.

● High Costs: Traditional education can be expensive through fees for

courses, textbooks, accommodations and other expenses. Students also

spend time and money getting to university or school.

● Limited opportunities for individualization: Study groups in universities

and schools are usually quite large in terms of the number of students.

Because of this, it is difficult to ensure an individual approach to learning.

● Insufficient motivation of teachers: in ordinary schools and universities,

the salary level of teachers does not depend much on the quality of their

teaching, so teachers are not motivated to produce higher quality

educational content.

Many people choose the flexibility and accessibility of online education,

which is why online educational platforms are becoming increasingly popular.

22

And the technology that can significantly improve such online platforms is

blockchain.

1.2.1 Blockchain use cases in education

Blockchain can improve education by increasing transparency by

providing a decentralized and secure way to store, validate, and share

educational data. It is also important to remember about stimulating learning

through the use of tokenomic models with rewarding students for good results.

The online orientation of the blockchain is an important alternative to the

modern educational process in terms of not only platforms for online classes but

also effective and high-quality assessment, and document management with the

possibility of constant updating and improvement.

The main uses of blockchain in education are:

● Storage of academic records: blockchain can serve as a reliable

database, where academic achievements, certificates, diplomas, and

other qualifications can be saved. Storing student achievement data

on the blockchain allows employers and other stakeholders to

verify the authenticity and validity of these documents.

● Stimulating students and teachers for better results: incentive and

reward systems using tokenomics can help significantly improve

students' academic success rates. Teachers can use tokens to reward

their students in the online learning environment for completing

modules or other assignments. In addition, the gamification

component of learning methodology and tokenization could

significantly change the teaching and learning process.

● Creation of courses using the blockchain: blockchain can serve as a

basis for creating decentralized platforms for online learning where

experts and educators can provide their services. This allows

23

students and teachers to interact directly, minimizing intermediaries

and reducing the cost of access to education. Smart contracts can

verify the completion of tasks and distribute crypto tokens to

students and teachers.

● Copyright protection and anti-plagiarism: Blockchain can be used

to create systems that track and verify the originality of scientific

papers and educational materials, helping to fight plagiarism and

protect copyrights.

1.2.2 Literature review on the use of blockchain in education

The use of blockchain in education is still in its early stages: only a few

institutions are using this technology. The first blockchain technology in

education was officially used in 2017 at the University of Nicosia (UNIC),

which decided to modernize and simplify the process of storing any documents

on specialization (diploma, certificate, research paper). The University of Surrey

(UniS) developed the ARCHANGEL system, which is considered one of the

first projects in the field of education, created on the basis of distributed ledger

technology [5].

Opportunities and problems associated with the use of blockchain in

education are considered in the following works:

Yan Ma and Yiming Fang in the paper [6] comprehensively summarize

the recent applications of blockchain in education, especially those related to

learning records, certificate issuance and management, as well as a decentralized

educational ecosystem. Technical and non-technical problems of using

blockchain in education were also discussed.

The paper [7] studied the key factors that influence the decision of

educational institutions to use blockchain technology for e-learning. The authors

also proposed an extended model of the Technology Acceptance Model for the

24

implementation of blockchain technology in the educational process. As a result

of the study, the authors found that compatibility, trialability and relative

advantage have a significant impact on the use of DLT in an educational

institution.

The main features and technical principles of the application of

blockchain technology are discussed in the work [8]. Han Sun and co-authors

also propose a solution to the problems of online education based on blockchain

technology. The article considers the possibility of a full recording of the

learning trajectory, trusted certification of learning results and decentralized

sharing of education resources.

The work [9] presents research and coverage of the experience of practical

use of blockchain technology in the education in Ukraine, in particular in the

sector of learning management systems. Among the possible options for using

blockchain in education, the author highlights the following: certification of

learning outcomes, accreditation of educational programs, security of learning

management systems, management of learning outcomes and rewards.

Special attention is paid to the use of smart contracts in education. The

paper [10] considers the possibility of creating a secure system based on smart

contracts for the examination system of a large university with a large number of

affiliated colleges. This article also analyzed various areas of smart contracts

and security issues. In the work [11] authors describe the education digital

authentication system based on blockchain technology with the use of smart

contracts. Using this authentication approach will help protect sensitive

information from unauthorized interference or data theft.

25

1.2.3 Advantages of using smart contracts in education

We can highlight the following benefits of using smart contracts in

education:

● automation of routine processes, such as registration for courses, issuance

of certificates, testing, and other administrative tasks. This allows teachers

and students to pay more attention to the educational process.

● the possibility of creating automatic regular payments for courses or

materials. This allows users to reduce payment processing costs and

ensures timely payment.

● ensuring a high level of trust between participants in the educational

process, since operations are performed automatically in accordance with

the logic and conditions prescribed in the contract. The smart contract

code is open and any user can access it.

● reducing the risk of errors associated with manual data entry due to

process automation using smart contracts.

● providing a high level of protection due to the fact that the data in smart

contracts is cryptographically protected, which ensures reliability and

security.

Thus, the use of smart contracts can improve the quality and accessibility

of education, make most processes more rational, and provide more efficient and

convenient interaction between all participants in the educational process.

In this work, we will consider smart contracts for the educational

platform. They will regulate all processes on the platform, such as registration,

distribution of rewards for students and teachers, calculation of teacher rankings,

and so on.

26

Conclusions to the chapter:

In this section, we considered the concepts of blockchain and smart

contracts. We have described the principles of operation of these technologies as

well as the advantages they provide. We also analyzed the possibilities of using

blockchain and smart contracts in education. The main uses of blockchain in

education are:

● Storage of academic records.

● Stimulating students and teachers for better results.

● Creation of courses using the blockchain.

● Copyright protection and anti-plagiarism.

We have described the improvements that these technologies can bring to

the educational process. Among the main advantages that the use of smart

contracts brings to the educational process are:

● Automation of routine processes.

● Ensuring a high level of trust between participants in the

educational process.

● Reducing the risk of errors associated with manual labor.

● Providing a high level of protection

27

CHAPTER 2

DETERMINATION OF SMART CONTRACTS REQUIREMENTS AND

SELECTION OF TOOLS

2.1 Requirements for the smart contracts and design

2.1.1 Educational Platform

An online education platform is seen as “an integrated set of interactive

online services that provides the teachers, learners, parents information, tools,

and resources to support and enhance educational delivery and management.”

[12]

In this work, an educational blockchain-based platform using tokenomics

is considered. It will allow teachers, students, and other stakeholders to interact

to provide a better educational process, and will also stimulate them to be more

productive through the use of a system of incentives and rewards.

Teachers can create their courses and post them on the platform, students

can register for them and study, and employers can look for potential employees

among the best students. This way, each participant can benefit from the

interaction as well as be rewarded for their success.

The platform will use smart contracts to automatically record and save

student grades, ensuring their reliability and accessibility to all stakeholders, and

to distribute scholarships, salaries, and other types of financial rewards.

The model of education tokenization was described in more detail in the

work [13]. The formalization of the model was also done to find “modeling

errors, shortcomings or possible contradictions; search for effective system

scenarios” [13].

Next, we will consider the main roles of users on the platform, as well as

the interaction between them. This will allow us to identify and describe the

28

main processes and requirements for them, for the further creation of smart

contracts.

2.1.2 Definition of user roles on the platform

During the work on the platform design, we identified the following user

roles:

● Teacher — the user who can create and host educational courses on

the platform and evaluate students for completing courses.

● Student — the user who can choose courses and enroll in them by

paying a certain amount of money.

● Employer — the user who can access student performance

information. Also gets access to the chat for the opportunity to

discuss cooperation with the student. Thus, the employer can

choose a suitable candidate and offer him a job.

The principle of user interaction with the platform is presented in the

diagram (Pic. 2.1). User roles on the platform, as well as their main actions, are

presented in the Use Case diagram (Pic. 2.2).

Pic. 2.1 — User interaction with the platform

29

Pic. 2.2 — Users actions on the platform

Next, we will describe users` actions on the platform in more detail.

Attention is paid to those use cases that will be handled by smart contracts.

30

Teacher:

● can create and host courses on the platform by paying a fixed fee to the

platform;

● can evaluate the student's achievements while studying. Evaluation can

occur at intervals determined by the teacher (for example, at the end of

each month);

● can invite other people to become users of the platform. The teacher will

receive a reward for this. The reward is given after the invitee registers for

the course with any teacher (for a student) or after creating his own course

(for a teacher).

Student:

● can choose the course on the platform and enroll in it. In this case, the

student must pay the course fee set by the teacher to the platform.

● can study course materials, participate in online classes, and take tests.

Depending on the student's performance during the course, the student

may receive a scholarship (based on his grades in the course).

● can also invite new users to the platform. The student will receive a

reward for this. The reward is given after the invitee registers for the

course with any teacher (for a student) or after creating his own course

(for a teacher).

● can take a survey on the platform and receive rewards for it. The survey

may concern a specific course that the student took (taken after

completion of the course) and the teacher who taught the course. And also

about the quality of the platform as a whole, the convenience of new

developments, and so on.

31

Employer:

● can register on the platform. In this case, the employer must pay an

appropriate fee to the platform. It depends on the number of staff of the

company or firm.

Company sizes are ranked:

1. Small: less than 50 employees;

2. Medium: from 50 to 249 employees;

3. Large: from 250 to several thousand employees.

● can pay tokens to be able to access student success information. Fee

amount is calculated by formula:

fee = (studentAmount*amountImpactFactor) +

(teacherRating*ratingImpactFactor) (1)

where:

○ studentAmount — number of students enrolled in the course;

○ amountImpactFactor — coefficient that determines the influence of

the number of students on the fee size;

○ teacherRating — Teacher`s Rating value on the platform;

○ ratingImpactFactor — coefficient that determines the influence of

the Rating value on the fee size;

Also gets access to the chat for the opportunity to discuss cooperation

with the student. If he wants to get the opportunity to communicate with

the student, he must pay the fee:

 fee = studentScore*10 (2)

where

○ studentScore — the student's current grade in this course.

32

● can order a teacher to create a course he needs to find a candidate for a

job or improve the qualifications of his employees. In this case, he must

pay a fee:

fee = teacherRating*(creationCourseFee+courseType) (3)

where:

○ teacherRating — Rating on the platform of the teacher who will

create the course;

○ creationCourseFee — base fee for creating a course on the

platform;

○ courseType — course type (will be described in more detail in the

section 2.1.3).

The funds are distributed as follows: 10% to the reserve, 90% to the

Reward account.

Considering the Rating value when calculating the fee value will allow

the employer to choose whether he wants to order a course at a higher

price, but from a teacher with a higher rating, or from a teacher with a

lower rating at a lower price. This will also encourage teachers to create

better courses to improve their Ratings.

Next, we will describe in more detail the processes that will be controlled

by smart contracts on the platform.

2.1.3 Course creation and publication on the platform

The main process of the educational platform is the creation of a course

by the teacher and its publication on the platform. As well as recruiting students

for the course, training, testing, and completing the course. Next, we provide a

more detailed description of this process on the educational platform that is

being developed:

33

1) The teacher starts creating the course and indicates the basic information

about the course: name, description, duration (number of modules),

number of participants, type (asynchronous (without video materials, only

text materials and presentations), asynchronous (with teacher's video

materials), synchronous (online lessons via video conferencing)).

2) The system offers the teacher the optimal cost of the course depending on

the type, duration of the course and the rating of the teacher.

courseCost = (basicModuleCost*typeCoef*durationCoef*ratingCoef)*

moduleNumber (4)

where:

● basicModuleCost — basic cost of one course module;

● typeCoef — coefficient for the course type;

● durationCoef — course duration coefficient;

● ratingCoef — coefficient that depends on the value of the teacher's

Rating on the platform;

● moduleNumber — number of modules in the course.

Automatic calculation of the course cost has the following advantages:

● Objectivity: Calculating costs based on specific factors such as

course type, length and teacher rating makes the cost setting process

more objective and reasonable.

● Stimulate improvement in teaching quality: Considering teacher

ratings when calculating the cost can incentivize teachers to

improve the quality of their courses and receive higher payment.

3) Next, the teacher clicks "Create course". At the same time, he must pay

the fee to the wallet of the platform. The transaction parameters (recipient

address, payment amount, etc.) are checked by the smart contract to

ensure that it is correct.

34

The process of creating a course by a teacher is described in detail in the

sequence diagram (Pic. 2.3).

4) The Student enrolls in the course. At the same time, the smart contract

checks whether the course is still available for recording. If yes then the

student must pay the cost of the course for at least the first module (10%

of the funds go to the reserve, the remaining funds go to the Reward

Account).

The cost of one module is calculated using the formula:

moduleCost = courseCost/ moduleNumber (5)

where:

● courseCost — cost of the entire course, calculated when it was created by

formula (4);

● moduleNumber — number of modules in the course.

The process of registering a student for a course is described in detail in the

sequence diagram (Pic. 2.4).

5) Testing takes place at the time set by the teacher (for example, at the end

of each month). In accordance with the scores received, students are

awarded a scholarship to their account (from the Reward Account).

Student success level coefficients:

1. Excellent —10

2. Good — 8

3. Not Bad — 6

4. Bad — 4

5. Very Bad — 2

Thus, the amount of the scholarship for the student is calculated using the

following formula (2):

scholarship= moduleCost*successCoef (6)

where:

● moduleCost — the price for one module of the course. Calculated by

formula (5);

35

● successCoef — student success level coefficient.

The current score of the student and the amount of his scholarship are

stored in the Blockchain.

The advantage of storing scores on the blockchain is that this technology is

a reliable mechanism that guarantees the integrity and objectivity of the data.

Therefore, scores stored on the blockchain cannot be changed or falsified. This

approach also helps to simplify administrative processes and reduce

bureaucracy.

6) The teacher will receive a monthly payment from the Reward account in

the amount which is calculated by next formula:

teacherReward = countStudent*moduleCost*0.9 (7)

where:

● countStudent — number of students who have registered for this

course;

● moduleCost — the price for one module of the course.

7) At the end of the course, students leave feedback about the teacher. Based

on their assessment, the teacher’s Rating on the platform is recalculated.

When recalculating the Rating, the type of course and duration are also

considered.

8) Students also receive the reward for giving feedback.

The full process from course creation to completion is shown in the diagram

(Pic. 2.5).

It is worth noting that payments on the platform will be made using the

platform’s own token, which will be implemented as an Algorand standard asset

[14].

36

Pic. 2.3 — Course creation by Teacher

37

Pic. 2.4 — Process of student registration for a course

38

Pic. 2.5 — Educational platform flow diagram

39

2.2 Tools for smart contracts implementation

In this section, we will consider the tools that will be used to develop

smart contracts for the educational platform.

As a blockchain for the implementation of the educational platform, we

have chosen Algorand [15]. It was introduced in 2017 by MIT professor Silvio

Micali [16]. Algorand is a high performance blockchain platform with fast and

low-cost transactions powered by its own consensus algorithm — Pure Proof-of-

Stake (PPoS). It uses its own virtual machine Algorand Virtual Machine

(AVM). This blockchain supports smart contracts, decentralized applications,

and the issuance of digital assets. Algorand uses its native cryptocurrency Algo.

2.2.1 Algorand Smart Contracts

Algorand Smart Contracts (ASC1) are small programs that perform

various functions on the blockchain and operate at layer 1 [17]. Algorand

supports two types of smart contracts: stateful and stateless (smart signatures).

Stateful smart contracts allow us to store data in global and local storage. Also,

the contract code is stored on the blockchain network and can be viewed at any

time. The smart contract itself, after being deployed on the network, is called an

application and has its own id. The smart signature is sent to the blockchain with

the transaction. Its logic accepts or rejects the transaction.

The main differences between smart contracts and smart signatures in

Algorand are listed below in Table 2.2.

40

Table 2.2

Difference between smart signatures and smart contracts in Algorand

Blockchain

 Smart signatures Smart contacts

Purpose of use Have two use cases:

signature authority

delegation and contract

accounts (escrow account)

Used to create complex

decentralized applications

that can manage assets,

perform fund transfers,

verify transaction

parameters etc.

Principle of

operation

As delegated authority:

As escrow account: the

compiled program has its

own unique address and

can function as an

Algorand account. Users

can transfer funds to it, as

well as withdraw

The user creates an

application call transaction

and sends it to the network.

The corresponding smart

contract code processes the

transaction, either

accepting or rejecting it

Access to network

data

Does not have access to

information about blocks

and transactions

Smart contracts are

executed on the blockchain,

have access to transaction

information and blockchain

state such as balances and

contract state

Complexity Small-sized programs of

low complexity

Programs of high

complexity, may contain

41

branches, loops, conditional

statements, etc.

Size 1000 bytes 1 kb

Thus, smart contracts are aimed at automating complex agreements and

operations, while smart signatures are aimed at ensuring the secure execution of

transactions on the Algorand network.

2.2.2 TEAL as language for Algorand Smart Contracts

 Smart contracts and smart signatures for the Algorand blockchain are

written in the language that is called TEAL (Transaction Execution Approval

Language). It is a low-level, assembly-like language that is interpreted by the

Algorand Virtual Machine (AVM) [17]. TEAL programs are processed line by

line, pushing and popping values on the stack. TEAL supports a limited set of

data types. These can be bytes or unsigned 64-bit integers. TEAL provides a set

of operators that operate on those values on the stack [18]. TEAL has more

limited potential functionality such as no support for recursive logic, however

this makes smart contracts safer to write and execute.

A smart contract written in TEAL can be compared to a class in object-

oriented programming. Then the application that is created and resides on the

blockchain can be compared to an instance of a class.

As we already mentioned, TEAL is a stack-based language. This means

that the program processes all actions requested by the transaction from which it

was called if and only if the last value on the stack is 1. If so, the TEAL program

returns true, and the transaction is processed. For every other value left on the

stack, false is returned and the transaction will fail [18].

TEAL is a restricted computing language. It is designed to perform simple

checks on the status of a transaction, not complex calculations.

42

Each operation in the TEAL program has an associated cost that counts

towards the total cost of executing the program. Smart contracts are given a total

opcode budget of 700. If the program exceeds this budget, the application call

will fail. This approach allows the Algorand blockchain to set a fixed fee per

application call, rather than charging a fee based on the computational cost of

calling a smart contract.

2.2.3 Algorand JS SDK

For interaction of the platform with the Algorand blockchain, Algorand JS

SDK is used. The Algorand JavaScript Software Development Kit [19] is a set

of tools, libraries and functions that help developers interact with the Algorand

blockchain network using the JavaScript programming language.

This SDK provides the following key functionalities for interaction with

the blockchain:

● Account creation and management. Algorand is an account based

blockchain platform. The SDK provides tools for creating and managing

accounts on the Algorand blockchain. SDK also allows users to get

information about the account (balance, account assets, etc.)

● Transaction creation. SDK allows users to create transactions and send

them to the Algorand network. These can be transactions of transferring

funds to other accounts, making applications (smart contracts) calls and

others.

● Interaction with smart contracts. SDK makes it possible to create

applications, trigger smart contract methods, pass arguments to the

application, and so on. This is done using the application creation and

application call transactions.

● Getting information about the current state of the blockchain. The SDK

can be used to obtain information about the current state of the Algorand

43

blockchain, including information about blocks, transactions, and

accounts.

In the next section we will look in detail at the features of developing

smart contracts on the Algorand blockchain using the TEAL language.

Conclusions to the chapter:

In this section, we defined the main roles of users on the educational

platform and the actions of each of them. It should be noted that attention was

paid to those actions that will be regulated by smart contracts. The process of

creating and placing a course on the platform was described in detail.

We have also defined the platform and tools for developing smart

contracts for the educational platform. Thus, Algorand was chosen as the

blockchain platform. We considered the features of Algorand smart contracts, as

well as their varieties: stateless and stateful smart contracts, and the main

differences between them. We considered the features of the programming

language for the development of Algorand smart contracts — TEAL

(Transaction Execution Approval Language) — low-level, assembly-like

language.

44

CHAPTER 3

IMPLEMENTATION AND AUDIT OF SMART CONTRACTS

3.1 Implementation of smart contracts for the educational

platform

In this section, we will take a detailed look at the process of creating

smart contracts and sending them to the network. We will also describe the

process of auditing smart contract code for the educational platform.

In the process of developing smart contracts, the following main stages

can be distinguished:

1. Define, document and analyze the requirements for smart contracts that

need to be developed.

2. Writing smart contracts code.

3. Verification of smart contract code using special tools.

4. Correcting errors and eliminating vulnerabilities discovered during code

verification.

5. Testing the correct execution of smart contracts.

6. Deployment of smart contracts in the blockchain network.

3.1.1 Development of the Smart contract for course management

Now we will look at the implementation of the stateful smart contracts

and their interaction with the client application through the SDK. In this project,

we will use JavaScript SDK for Algorand.

The Smart Contracts code consists of the ApprovalProgram and the

ClearStateProgram.

● ApprovalProgram code defines the logic and conditions for approving or

rejecting transactions that trigger a contract.

● ClearStateProgram code is used to define the logic that is executed at the

end of the contract's lifecycle.

45

In the ApprovalProgram, we define variables that will be stored in global

storage. It should also be noted that the global state of stateful smart contract is

limited to 64 key-value pairs, and the local state is limited to 16 key-value pairs

for each individual account that interacts with it. The size of each key/value pair

is limited to 128 bytes.

CourseManagement Application will regulate the basic processes of

creating and managing courses.

Pic. 3.1 — CourseManagement application methods

Next, we specify the key-value-pairs that the CourseManagement

application contains in its global and local storages.

Global State Schema for CourseManagement Application:

● CourseTitle — the course name specified by the teacher during course

creation.

● Type — type of course: asynchronous (without video, only text materials,

presentations, etc.), asynchronous (with video materials from the teacher),

46

synchronous (online video lessons with students). Also specified by the

teacher during course creation.

● ModulesNumber — number of the modules in the course.

● EnrollmentLimit — maximum number of students who can enroll in a

course.

● OpenForEnrollment — indicates whether the course is available for

enrollment of new students. The value is checked when new students are

recruited (1 – registration is open, 0 – registration is closed).

● EnrolledStudentsNumber — number of students who have enrolled in the

course.

● CoursePrice — the cost a student must pay to take a course.

● TypeCoefficient — coefficient, which depends on the project type. It is

used when calculating project cost.

● DurationCoefficient — coefficient, which depends on the project

duration. It is also used when calculating project cost.

● RatingCoefficient — coefficient, which depends on the Teacher`s Rating

value.

Local State Schema for CourseManagement Application:

● CurrentScore — the current value of the student's success results. The

indicator is used to calculate the amount of the student's scholarship.

● Scholarship — the current amount of scholarship that the student will

receive per month.

It's worth noting that these schemas are immutable after creation.

● Minimum balance requirements

Creating new applications increases the minimum account balance

requirements. This minimum balance is necessary to cover the storage cost for

47

the TEAL application state, which includes the storage of global and local

variables, as well as any other data associated with the application.

Global storage is actually stored in the creator account, so that account is

responsible for the global storage minimum balance.

The minimum balance increases with each asset contained in the account

(regardless of whether the asset was created or owned by the account), and with

each application created or registered in the account. The minimum balance

requirement is reduced when the application created by this account is removed

from the network.

Thus, when creating this application, the minimum balance requirements

for the account that creates it will increase as follows:

● 100,000 microAlgos — base fee for each page requested.

● 25,000 + 3,500 = 28,500 for each Uint variable in the global storage =

10*28 500 = 285 000 microAlgos.

The creator of the Application would have its minimum balance raised by

385 500 microAlgos = 0.3855 Algo.

Algorand smart contracts interact with the backend of the platform using

transactions and application calls. Application calls allow external entities to

invoke specific functions or methods defined within the smart contract. These

calls can pass arguments, trigger specific actions or calculations within the

contract, and return results or updated state.

● Application Creation

We define global storage variables when creating an application. In TEAL

code this happens as follows:

48

1 #pragma version 6

2 //If app id == 0, must be creation call

3 txn ApplicationID

4 int 0

5 ==

6 bz not_creation
7

8 byte "CourseTitle"

9 txna ApplicationArgs 0

10 app_global_put

11

12 byte "Type"

13 txna ApplicationArgs 1

14 app_global_put

15

16 byte "ModulesNumber"

17 txna ApplicationArgs 2

18 btoi

19 app_global_put

20

21 byte "EnrollmentLimit"

22 txna ApplicationArgs 3

23 btoi

24 app_global_put

25

26 byte "EnrolledStudentsNumber"

27 int 0

28 app_global_put

29

30 byte "OpenForEnrollment"

31 int 1

32 app_global_put

33

34 byte "CoursePrice"

35 int 0

36 app_global_put

37

38 byte "TeacherRating"

39 txna ApplicationArgs 4

40 btoi
41 app_global_put

42

43 byte "TypeCoefficient "

44 int 0

45 app_global_put

46

47 byte "DurationCoefficient"
48 int 0

49 app_global_put

50

51 byte "RatingCoefficient"

52 int 0

53 app_global_put

54

55 b done

Listing 3.1 — Definition of global variables during application creation

49

Thus, at the beginning we check that ApplicationID is 0. If this statement

is correct, then we move on to the part of the code that is responsible for

creating the Application and allocating global state variables.

In this code snippet, the values of the "CourseTitle", "Type",

"ModulesNumber", "EnrollmentLimit", "CoursePrice" and "TeacherRating"

variables are set by the application creator as arguments when creating the

CourseManagement Application. When creating the application, we set the

value of the "OpenForEnrollment" variable to 1. This means that the course is

open for student enrollment. "EnrolledStudentsNumber" variable default value

is 0. The default values of the coefficient variables are also set to 0.

After that, we move to a label called “done”, which will return and

approve the application creation transaction.

● ApplicationCall transactions

From the backend, we construct an application call transaction using the

Algorand SDK.

There are several types of ApplicationCall transactions:

● NoOp: the most used transaction type. It allows the developer to make

application calls to execute the ApprovalProgram.

● OptIn: this transaction allows the user to start participating in the smart

contract (application). Allows the user to use the application's local state.

● DeleteApplication: this operation is used to remove a smart contract

(application) from the Algorand network blockchain. Once this

transaction is completed, the smart contract will no longer be available.

● UpdateApplication: this transaction allows the creator to make changes to

the code, parameters, or other aspects of the smart contract after it has

been deployed. This can be useful in cases where the contract needs to be

updated or modified to fix bugs, ensure security, or extend the

functionality of the contract.

50

● CloseOut: with this transaction the user can stop using the application.

This will lead to removing the application's local state from the user

account.

● ClearState: this transaction allows the user to clear the local state of the

application, even if the application was deleted by the creator.

All transaction types except DeleteApplication are part of the

ApprovalProgram. In our contract, we check the transaction type and jump to

the appropriate branch depending on the type. Next, we are giving the snippet of

TEAL code for jumping between program branches:

1 txn OnCompletion

2 int OptIn

3 ==

4 bnz handle_optin

5

6 txn OnCompletion

7 int NoOp

8 ==

9 bnz handle_noop

 …

Listing 3.2 — Jumping between program branches

Operation “bnz target” — jump to TARGET if the last element of the

stack is non-zero.

“handle_optin” branch is called when the ApplicationCall type is OptIn.

This occurs when the student enrolls in the course since the user account that

wants to use its local state for the application must subscribe to the smart

contract.

51

1 handle_optin:

2 byte "OpenForEnrollment"

3 int 1

4 ==

5 bz failed

6

7 int 0

8 byte "CurrentScore"

9 int 0

10 app_local_put

11

12 int 0

13 byte "Scholarship"

14 int 0

15 app_local_put

16

17 byte "EnrolledStudentsNumber"

18 app_global_get

19 int 1

20 +

21 dup

22 store 0

23 byte "EnrolledStudentsNumber"

24 load 0

25 app_global_put

26

27 byte "EnrolledStudentsNumber"

28 app_global_get

29 store 1

30 byte "EnrollmentLimit"

31 app_global_get

32 load 1

33 ==

34 bnz close_enrollment

35 b done

Listing 3.3 — OptIn ApplicationCall branch

In this snippet, we check if there are places available to enroll in the

course (OpenForEnrollment == 1), allocate variables "CurrentScore'' and

52

"Scholarship" and initialize them with default values. We also increment the

value of the "EnrolledStudentsNumber" variable and check if the course is

closed for enrollment of new students (EnrolledStudentsNumber ==

EnrollmentLimit). Then we set the “OpenForEnrollment” value to 0.

NoOp type of the ApplicationCall transactions forms the main part of the

smart contract Approval program. The CourseManagement Application contains

6 methods that can be executed depending on the argument passed to the

transaction:

1) set_coefficient: method for setting course coefficient values depending on

its type, duration and Teacher rating. AppCall transaction argument —

"SetCoefficient" of byte type.

2) calculate_price: course price calculation method. AppCall transaction

argument — "CalculateCoursePrice" of byte type.

3) evaluate_student: method that is called when the teacher evaluates the

student. AppCall transaction argument — "EvaluateStudent" of byte type.

4) calculate_teacher_reward — teacher reward amount calculation method.

AppCall transaction argument — "CalculateTeacherReward" of byte type.

5) check_teacher_payment: method that is called when it is necessary to

verify the validity of the transaction created when a teacher pays a

commission to the platform for creating the course. AppCall transaction

argument — "CheckTeacherPayment" of byte type.

6) check_student_payment: method that is called when it is necessary to

verify the validity of the transaction created when a student pays a

commission to the platform for enrolling in the course. AppCall

transaction argument — "CheckStudentPayment" of byte type.

The following is a “handle_noop” snippet:

53

1 handle_noop:

2 txna ApplicationArgs 0

3 byte "CalculateCoursePrice"

4 ==

5 bnz calculate_price_with_coef

6

7 txna ApplicationArgs 0

8 byte "EvaluateStudent"

9 ==

10 bnz evaluate_student
 …

 err

Listing 3.4 — NoOp ApplicationCall branch

The cost of the course is calculated (according to formula (4), described in

the previous section) using the TEAL code as follows:

1 calculate_price:

2 byte "TypeCoefficient"

3 app_global_put

4 int 100

5 *

6 dup

7 store 0

8 byte "DurationCoefficient"

9 app_global_get

10 load 0

11 *

12 dup

13 store 1

14 byte "RatingCoefficient"

15 app_global_get

16 load 1

17 *

18 dup

19 store 2

20 byte "CoursePrice"

21 load 2

22 app_global_put

23 b done

54

Listing 3.5 — Course cost calculation

To validate a payment transaction, we can use Algorand's atomic

transactions, which allows multiple transactions to be sent at the same time, and

if any of the transactions fail, then they all fail. To check the parameters of

payment transactions created in the JS SDK, we can group this transaction with

the stateful smart contract call and send them simultaneously. In TEAL we

check values of the transaction in the group as follows:

1 check_teacher_payment:

2 global GroupSize

3 int 2

4 ==

5 assert

6

7 gtxn 0 AssetAmount

8 int 50

9 ==

10 assert

11

12 gtxn 0 XferAsset

13 int 106326517

14 ==

15 assert

16

17 gtxn 0 AssetReceiver

18 addr

2ERPXALR7IESFS6FWX45CDA4Z3447SPNMC6YQHF2UXOXRRNLX5KZAMT4DI

19 ==

20 assert

21

22 gtxn 0 RekeyTo

23 global ZeroAddress

24 ==

25 assert

26 b done

Listing 3.6 — Checking payment transaction parameters

In this example, we checked the parameters of the transaction that is

created when a teacher pays a commission to the platform for creating a course.

55

We checked that the transaction amount is equal to the established commission

amount, the address of the recipient of the funds is the platform address, and the

asset ID corresponds to the platform token id that is used for payment.

In the backend, we can analyze the transaction result to determine if the

smart contract executed successfully and to extract any relevant data or state

changes resulting from the contract's execution.

When a teacher evaluates a student, the student's score is saved in the

application's local state. The amount of the scholarship for a given student is

also calculated. The scholarship is paid to the student from the Rewards account.

Thus, the CourseManagement smart contract must make an inner transaction

call to the application, which is responsible for distributing rewards (it is also an

escrow account).

Calculation of the amount of the student's scholarship according to the

formula (6) on the TEAL code is as follows:

1 calculate_scholarship:

2 byte "CoursePrice"

3 app_global_get

4 store 0

5 load 0

6 byte "ModulesNumber"

7 app_global_get

8 /

9 dup

10 store 1

11 int 0

12 byte "CurrentScore"

13 app_local_get

14 load 1

15 *

16 dup

17 store 2

18 int 0

19 byte "Scholarship"

20 load 2

21 app_local_put

56

Listing 3.7 — Calculation of student scholarship amount

Creating the inner transaction to call the Rewards application from

CourseManagement smart contract is done as follows:

//call reward smart contract

1 itxn_begin

2

3 int appl

4 itxn_field TypeEnum

5

6 txn Applications 1

7 itxn_field ApplicationID

8

9 int NoOp

10 itxn_field OnCompletion

11

12 byte "PayStudentScholarship"

13 itxn_field ApplicationArgs

14

15 int 0

16 byte "Scholarship"

17 app_local_get

18 itxn_field ApplicationArgs

19

20 itxn_submit

21 b done

Listing 3.8 — Inner transaction to call the Rewards application

As arguments when calling the Rewards application, we pass the name of

the method that needs to be called in the smart contract, and the amount of the

scholarship that needs to be paid to the student.

In this example, we are calling one smart contract from another. It should

be noted that “Contract-to-Contract Calling” has some features and limitations

[31]:

● Contract A can call Contract B, which calls Contract C, etc., but call

depth is limited to 8.

57

● The number of inner transactions is limited to 256 per transaction group.

This includes both the inner transaction of contract A that calls contract B,

and those inner transactions that contract B can execute.

● The fee for inner transactions, as well as for any other transactions in

Algorand, is 0.01 Algo. If smart contract A makes a call to smart

contracts B and C, the commission amount will be equal to 0.3 Algo.

● Smart contract A cannot make a call to smart contract B if its code

contains a call to smart contract A. This is done in order to avoid “re-

entrancy” vulnerability.

When the application is being deleted, the handle_deleteapp method is

triggered.

1 handle_deleteapp:

2 txn Sender

3 global CreatorAddress

4 ==

5 bz failed

6

7 failed:

8 int 0

9 return

Listing 3.9 — DeleteApplication ApplicationCall branch

If the transaction sender address does not match the application creator

address, the application call will fail. This approach allows only the app creator,

such as the course creator, to delete the application. The smart contract logic

will reject the DeleteApplication transaction if it is submitted by any other user.

58

3.1.2 Development of the Smart contract for rewards distribution

The Reward account will be implemented as a smart contract. Once

deployed, the smart contract has its own address and can function as an escrow

account.

An escrow account is an account in which funds are locked until some

predetermined event occurs or a certain set of conditions are met. The conditions

that determine when funds must be sent are encoded and thus enforced by the

logic of the contract account itself. This eliminates the need for a centralized

authority to determine whether a condition has been met and then moderate the

transaction [20].

Thus, all payments from users will be credited to this account. Next, the

smart contract will have methods for creating inner transactions for paying

scholarships to students and awards to teachers.

Pic. 3.3 — RewardsManagement smart contract methods

● Reward payment for inviting a new participant

When an already registered user invites a new user to the platform, and the

latter enrolls in any course (student) or creates his own course (teacher), the

59

inviting user can receive a fixed reward. Then the RewardsManagement smart

contract is called, in which the pay_invitation_reward method is triggered.

1 pay_invitation_reward:

2 itxn_begin

3

4 int axfer

5 itxn_field TypeEnum

6

7 int 106326517

8 itxn_field XferAsset

9

10 txn Accounts 1

11 itxn_field AssetReceiver

12

13 int 20

14 itxn_field AssetAmount

15

16 int 0

17 itxn_field Fee

18

19 itxn_submit

Listing 3.10 — Inner transaction for paying rewards to users for inviting a

new user

This method creates the inner transaction that transfers a fixed amount of

the asset from the Rewards account to the user's account.

The parameters of this transaction are: the type of transaction (in this case,

it is axfer — asset transfer transactions), the id of the asset being transferred

(106326517 — id of the platform payment token), the address of the recipient

of the asset (txn Accounts 1 — the address is passed as an argument to the

application call transaction in Algorand JS SDK), the amount of the asset being

transferred.

● Payment of the students scholarship

When the student's scholarship amount is calculated in the

CourseManagement application, it creates the inner transaction that makes a call

60

to the RewardsManagement application and triggers the

pay_student_scholarship method.

1 pay_student_scholarship:

2 itxn_begin

3

4 int axfer

5 itxn_field TypeEnum

6

7 int 106326517

8 itxn_field XferAsset

9

10 txn Accounts 1

11 itxn_field AssetReceiver

12

13 txna ApplicationArgs 1

14 itxn_field AssetAmount

15

16 itxn_submit

17

18 b done

Listing 3.11 — Inner transaction to pay the scholarship to the student

3.1.3 Creating test accounts

In order to be able to create an application on the Algorand network and

interact with a smart contract, we need to have test accounts that must have a

certain amount of Algo on their balance in order to be able to pay transaction

fees. It is possible to create such a test account using Algorand SDK with the

following code:

const generatedAccount = algosdk.generateAccount();

const passphrase =

algosdk.secretKeyToMnemonic(generatedAccount.sk);

Listing 3.12 — Creating an account using algosdk

To finance a test wallet, we can transfer funds from another funded wallet

or use the Algorand dispenser [21].

61

To make it easier to test smart contracts on the Testnet, we can use the

private account key for an Algorand account to retrieve account information

from the blockchain or sign transactions. To work with assets on the Mainnet, it

is necessary to create an account using a trusted wallet, for example Pera wallet

[22] for Algorand. This will allow users to manage their accounts and assets

safely and correctly. Since the platform being developed will use its own token,

it is also necessary to set up accounts for this asset.

To be able to receive an Algorand asset, the user must “opt-in” to receive

it by sending a 0 amount of the ASA to himself (to the account that will receive

the asset). This approach protects users from spam assets, preventing unknown

assets or assets that are not whitelisted from being sent to the user without his

approval.

3.1.4 Deployment of smart contracts

To test smart contracts, we can use the Algorand test network — Testnet.

In it developers can perform the same operations as in the real network (create

own assets, transfer funds, create and call applications, etc.), but without having

to spend real Algos and pay transaction fees.

Once deployed, the instance of the smart contract on the network is called

an application and is given an application ID. Additionally, every smart contract

has a unique Algorand address that is generated from this specific ID.

● CourseManagement SC

To deploy the CourseManagement smart contract in the network,

makeApplicationCreateTxn is created:

const arg0 = Encodeuint8arr('CourseTitle');

const arg1 = Encodeuint8arr('Asynchronous with video

material');

const arg2 = algosdk.encodeUint64(3); //ModulesNumber

const arg3 = algosdk.encodeUint64(20); //EnrollmentLimit

const arg4 = algosdk.encodeUint64(teacherRating);

62

const from =

"2ERPXALR7IESFS6FWX45CDA4Z3447SPNMC6YQHF2UXOXRRNLX5KZAMT4DI";

 const onComplete = algosdk.OnApplicationComplete.NoOpOC;

const approvalProgram = await

getBasicProgramBytes('CreateCourse.teal');

const clearProgram = await

getBasicProgramBytes('clear.teal');

//txn params

const numLocalInts = 3;

const numLocalByteSlices = 0; //The numLocalByteSlices variable is set

to 0, indicating that there are no local byte slice variables required for the smart contract.

const numGlobalInts = 10; // The numGlobalInts variable is set to 10,

indicating that the smart contract requires 10 global integer variables.

const numGlobalByteSlices = 2;

const appArgs = [arg0, arg1, arg2, arg3, arg4]; //The appArgs

variable is an array that contains the arguments to be passed to the smart contract during the

application call.

// get suggested params

const suggestedParams = await

algodClient.getTransactionParams().do();

// create the application creation transaction

const createTxn = algosdk.makeApplicationCreateTxn(

 from,

 suggestedParams,

 onComplete,

 approvalProgram,

 clearProgram,

 numLocalInts,

 numLocalByteSlices,

 numGlobalInts,

 numGlobalByteSlices,

 appArgs

);

// send the transaction

const signedCreateTxn = createTxn.signTxn(system.sk);

const { txId: createTxId } = await algodClient

 .sendRawTransaction(signedCreateTxn)

 .do();

Listing 3.13 — Creating a create application transaction

63

The function returns the ID of the created application. Next, the ID is used

for application calls. The ID can also be used to view the code of the created

application, as well as the values that are stored in its global state using the

blockchain explorer. One of these explorers is AlgoExplorer [23].

Pic. 3.2 — CourseManagement Application Global State in Algo Explorer

Pic. 3.3 — CourseManagement Approval Program in AlgoExplorer

● RewardsManagement smart contract

To create the Rewards application, we also have to create

makeApplicationCreateTxn transaction. Once the RewardsManagement SC is

64

deployed, it must be funded as it functions as an escrow account and has a

minimum balance requirement. To do this, we need to get the escrow account

address and transfer Algo there (the minimum balance for any Algorand account

is 0.1Algo). Since the platform will use its own token for payment, escrow must

also be set up to work with it (opt-in the asset).

 Obtaining an escrow account address using Algosdk:

const escrowAddress = algosdk.getApplicationAddress(appId);

To fund the escrow account, we create a regular payment transaction

using Algorand JS SDK, where the escrow account address will be specified as

the receiver:

let sender = system.addr;

let receiver = escrowAddress;

let suggestedParams = await

algodClient.getTransactionParams().do();

let amount = 200000; //200000 MicroAlgo = 0.2 Algo

const txn =

algosdk.makePaymentTxnWithSuggestedParamsFromObject({

 from: sender,

 suggestedParams,

 to: receiver,

 amount: amount,

 });

const signedTxn = txn.signTxn(system.sk);

const { txId: createTxId } = await algodClient

 .sendRawTransaction(signedTxn)

 .do();

Listing 3.14 — Creating a payment transaction to transfer Algo to the

escrow account

We are transferring 0.2 Algo because we are going to set up the escrow to

work with the platform asset. For an account with two assets, the minimum

balance is 0.2 Algo.

65

To opt-in the escrow account to the asset, we must create a payment

transaction and send 0 of the asset amount to that account. It will increase the

account minimum balance by 100,000 microAlgos.

1 opt_in_escrow:

2 // opt-in to the asset

3 itxn_begin

4

5 int axfer

6 itxn_field TypeEnum

7

8 txn Assets 0

9 itxn_field XferAsset

10

11 global CurrentApplicationAddress

12 itxn_field AssetReceiver

13

14 int 0

15 itxn_field AssetAmount

16

17 itxn_submit

18 b done

Listing 3.15 — Opting-in the escrow account to the platform asset

After this, any account can transfer the platform asset to the escrow

account.

3.1.5 Interaction with the smart contract

To trigger the execution of the smart contract logic, we use application

calls. They can include any necessary arguments or data required by the smart

contract. From the backend, we create an application call transaction. Specify the

application ID of the stateful smart contract and additional parameters required

by the contract's logic.

When called, smart contracts on Algorand gain access to certain external

resources, so it is necessary to determine which addresses, applications and

66

assets the contract will interact with (these are called “foreign”

assets/accounts/applications).

Example of calling the ‘CalculateCoursePrice’ method in the

CourseManagement Application:

const appArgs = [Encodeuint8arr('CalculateCoursePrice')];

const suggestedParams = await

algodClient.getTransactionParams().do();

const appForeignAssets = [106326517]; //id of the Platform token

const appAccounts = [accAddress]; //appAccounts variable is assigned

an array containing accAddress, representing the account associated with the application.

const foreignApps = [foreignAppId]; //foreignApps variable is

assigned an array containing foreignAppId, representing the application associated with the

current application.

const callTxn = algosdk.makeApplicationNoOpTxn(

 system.addr,

 suggestedParams,

 appId,

 appArgs,

 appAccounts,

 foreignApps,

 appForeignAssets

);

const signedCallTxn = callTxn.signTxn(system.sk);

const { txId: callTxnId } = await algodClient

 .sendRawTransaction(signedCallTxn)

 .do();

Listing 3.16 — CourseManagement Application NoOp transaction

67

When a student enrolls in the course, he must also agree to interact with the

application. For this purpose, the Opt-In transaction is created as follows:

const suggestedParams = await

algodClient.getTransactionParams().do();

const appOptInTxn = algosdk.makeApplicationOptInTxnFromObject({

 from: studentAccount.addr,

 appIndex: appId,

 suggestedParams,

 });

const signedCallTxn = appOptInTxn.signTxn(studentAccount.sk);

const { txId: callTxnId } = await algodClient

 .sendRawTransaction(signedCallTxn)

 .do();

Listing 3.17 — Opt-in transaction

In this case, the sender of the transaction is the student who must opt-in to

the application. The local storage in the contract will be associated with his

address.

Next, we will look at the main vulnerabilities that can occur in smart

contracts written in TEAL. We will also check the code of the smart contracts

described in this section for the presence of these vulnerabilities.

3.2 Smart contracts code audit

Smart contracts are based on program code, any error in the code leads to

incorrect execution of the contract. This can be especially dangerous when it

comes to financial transactions or other actions, the cost of errors of which is

high enough. Errors in smart contracts can lead to large financial losses and a

breach of user confidence in the platform. That is why the analysis of smart

contracts is an essential part of the development of any decentralized

application. To ensure the reliability, security, and correct execution of smart

68

contracts, it is necessary to audit the code. Verification of smart contracts allows

developers to check the correctness of their code and protect them from possible

errors.

A smart contract audit is a procedure that involves checking and testing

the smart contract code to identify possible problems or vulnerabilities. Smart

contracts audit is a rather complex and voluminous task. It includes the

following stages: checking the smart contract specification, analysis of the

contract code, functionality, and logic of its operation, and manual verification

of the smart contract.

The purpose of smart contract auditing is to find any behavior that may

have caused the code to fail or provide an unexpected result to the user. It is

performed to identify potential vulnerabilities, programming errors, weaknesses,

and other issues that could lead to unwanted consequences or security risks.

Some of the main reasons for the importance of smart contracts audit are:

● Security and Quality Improvement: Smart contract code review

reveals vulnerabilities, bugs, and weaknesses that can be exploited

by hackers to attack or gain access to assets and data, which can

lead to loss of funds. Auditing improves the quality and reliability

of contracts, which reduces the risk of failures, unexpected

behavior, or loss of assets.

● Compliance: An audit helps to ensure that the contract operates in

accordance with the requirements and specifications defined by the

customer, performs the necessary operations, and ensures that the

platform functions correctly.

● Transparency and trust: Smart contract code audits provide

platform users with confidence in reliability, security, and

compliance.

69

Next, we will take a closer look at the vulnerabilities that are most often

found in Algorand smart contracts (Table 3.1). They are described in more detail

in [24]. Also, some new vulnerabilities typical for Algorand smart contracts are

highlighted in the work [25].

Table 3.1

Vulnerabilities in the Algorand smart contracts

Vulnerability Description

Missing Group Size Check If the application does not check the

size of a group of transactions,

attackers can add their own

transactions to the group, which can

lead to the loss of funds if these

transactions involve the transfer of

assets.

Consider the example: removing lines

2-5 in Listing 3.6.

Missing Access Control If the smart contract code does not

contain checks for application calls

such as UpdateApplication and

DeleteApplication, an attacker can

70

update the application code or

completely delete it.

Missing Asset ID Verification If the smart contract code does not

check the ID of the asset that the

contract interacts with (accepts, sends,

etc), an attacker can manipulate the

logic of the contract by passing a fake,

less or more valuable asset instead of

the correct asset.

Consider the example: removing lines

12-15 in Listing 3.6. The attacker can

then create a valid transfer transaction

for more valuable assets.

Missing Inner Transaction Fee Check If the fee amount for an inner

transaction is not explicitly set in the

smart contract, an attacker can create

operations that perform inner

transactions and burn the application

balance in the form of fees.

Consider the example: removing lines

16-17 in Listing 3.10.

Missing RekeyTo Parameter Check If there is no check for the RekeyTo

parameter, then an attacker can set it

on his public address, and will be able

to directly control the contract account

assets or take over the signature

account. More details about the

71

possibility of Rekeying can be found

in the Algorand documentation [26].

Missing Transaction Receiver Check To validate payment transactions in

Algorand, developers can use an

atomic transaction group to link

payment transactions and application

call transactions (Part 3.1.1, Listing

3.6). If a smart transaction does not

verify the receiver of a payment

transaction or asset transfer

transaction, an attacker can use this to

specify a different address for the

recipient of the transaction.

Consider the example: removing lines

17-20 in Listing 3.6.

Overflow/underflow The AVM default panics on

overflows, underflows, or division by

zero. It halts execution and fails the

transaction. To prevent this error from

occurring, it is possible to add

restrictions on the values of variables

that are involved in operations that

can possibly result in the overflow or

underflow.

There are different approaches to analyzing smart contract code, including:

72

● Formal verification — method that uses mathematical proof and logic to

verify the correctness of a smart contract. When implementing smart

contracts, formal verification can prove that the business logic of the

contract satisfies the predefined specification. This is done by creating

formal specifications that describe the characteristics of a smart contract

and checking the compliance of the formal model with the smart contract

specification. The specifications must include all the properties of the

contract and define how it should operate under different conditions.

Formal verification uses many approaches. Theorem Proving, Model

Checking, and Runtime Verification are widely used in the context of

smart contracts [30].

● Symbolic execution is one of methods used for formal verification that

allows developers to automatically explore all possible branches of

program execution using symbolic values instead of specific inputs. These

values determine which paths should be executed. In the context of smart

contracts, this method allows developers to explore all possible paths and

conditions in the contract code to discover potential vulnerabilities or

misbehavior without actually executing the contract on the blockchain

network. This method also makes it possible to detect parts of the code

that are not used in the smart contract (Dead Code) and can be potentially

vulnerable.

● Static analysis — method that checks the source or bytecode of a smart

contract before execution. Static analyzers can detect common

vulnerabilities in smart contracts.

In this work, to audit the code of smart contracts, we will use Tealer —

TEAL static analyzer with a set of vulnerability detectors for fast contract

verification [27]. It analyzes the Teal program and creates its CFG (Control

73

Flow Graph). The analyzer comes with a set of vulnerability detectors and

printers, allowing developers to quickly review contracts.

Tealer printers provides following functionality:

● cfg: Export the CFG of the contract to a dot file;

● human-summary: Print a human-readable summary of the contract;

● function-cfg: Export the CFG of each subroutine in the contract;

● call-graph: Export the call-graph of the contract to a dot file [27].

Tealer provides following detectors:

● is-deletable: check if the stateful application can be deleted by sending an

DeleteApplication type application call;

● is-updatable: check if the stateful application can be updated by sending

an UpdateApplication type application call;

● unprotected-deletable: check if the stateful application can be deleted by

anyone;

● unprotected-updatable: check if the stateful application can be updated by

anyone;

● group-size-check: check missing GroupSize validation;

● can-close-account: check missing AssetCloseTo field validation [28].

Thus, using this tool, we can check our smart contract for some of the

vulnerabilities described in the Table 3.1, namely: missing Access Control while

updating or deleting the application, missing Group Size Check.

Below is the result of checking the CourseManagement smart contract

using the Tealer tool (Pic. 3.4).

74

Pic. 3.4 — The result of checking the CourseManagement smart contract

using the Tealer for vulnerabilities

As we can see, these vulnerabilities were not found in the smart contract.

If the smart contract code contains some vulnerabilities, the Tealer tool will

show the vulnerable path. We deliberately removed transaction group check

when checking payment transaction parameters (Listing 3.6) to show the

vulnerable path detected by the Tealer in the smart contract (Pic. 3.5).

75

Pic. 3.5 — Vulnerable path checking payment transaction parameters

To explore this path, we can build the CourseManagement smart contract

data flow graph using the “print-cfg” printer of Tealer tool.

CFG provides a visual representation of the control flow within a smart

contract. This can be useful for developers to understand the logical flow of a

program and identify potential problems or vulnerabilities.

Figure 3.6 shows a vulnerable path that was detected in the smart contract.

Additional information has been added to each basic block in the graph:

● block_id: id, which is used to identify the basic block in the contract. This

makes it easier to analyze the structure and logic of the contract and also

makes it easier to understand the results of the detector`s work.

● cost: opcode cost of the basic block execution.

Complete CFG for the RewardsManagement smart contract is provided in

Appendices A.

76

Pic. 3.6 — CFG of the vulnerable path in the CourseManagement SC

77

Conclusions to the chapter.

In this section, we looked in detail at the process of implementing stateful

smart contracts on TEAL and their interaction with the client application using

the Algorand JS SDK. The structure of smart contracts and the main methods of

their work were described. In the course of the work, smart contracts for course

management and rewards management were created.

The CourseManagement application is necessary to manage the main

processes on the platform that are associated with the course: creating a course,

calculating its cost, registering students for the course, saving student scores,

and calculating the sum of scholarships for students and rewards for teachers.

The RewardsManagement smart contract controls the distribution of rewards to

users. It also functions as an escrow account.

We also described the main vulnerabilities that may exist in the code of

smart contracts created on TEAL. We examined the main approaches to

verifying the code of smart contracts. In this work, we analyzed the created

smart contracts for the presence of the described vulnerabilities. We also used

the static code analysis tool for smart contracts on TEAL — Tealer, which

allows us to search for vulnerabilities and explore malicious paths in the

contract code.

78

CONCLUSIONS

In this thesis, we considered the possibilities of using blockchain, and

smart contracts in particular, in education. We analyzed the features of these

technologies as well as the benefits they provide.

This study was undertaken to consider the process of developing smart

contracts for a blockchain-based educational platform. The smart contracts

being developed make it possible to manage the process of registering students

for a course, save their scores in the blockchain, calculate the amount of

scholarships for students and rewards for teachers, and distribute other financial

rewards to platform users.

In the course of our work, we identified the main roles of users on the

educational platform and the actions of each of them, highlighting those use

cases that are regulated by smart contracts.

Algorand was chosen as a blockchain platform for the development of

smart contracts. It is one of the fastest, low-cost, carbon-negative blockchains

that has advanced smart contract capabilities with low transaction fees. TEAL

was chosen as the language for writing smart contract code for the educational

platform.

We developed two smart contracts: CourseManagement and

RewardsManagement. CourseManagement application manages the main

processes on the platform related to the course: creating a course, calculating its

cost, registering students for the course, saving student scores in blockchain,

calculating the amount of scholarships for students and rewards for teachers.

RewardsManagement application controls the distribution of financial rewards

among platform users. It also functions as an escrow account.

In this work, we described the main vulnerabilities in smart contracts

written in the TEAL language. We analyzed the causes of their occurrence and

the possibility of eliminating these vulnerabilities. The developed smart

79

contracts were also tested for the described vulnerabilities. We also used the

Tealer tool to check the code of our smart contracts for the presence of

malicious paths.

80

REFERENCES

[1] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

Decentralized Business Review, 21260.

[2] Cryptopedia: website. URL:

https://www.gemini.com/cryptopedia/glossary

[3] What Is Blockchain and How Does It Work? (September, 2023).

Medium: website. URL:

https://medium.com/@zahidsardarsardarali/what-is-blockchain-and-how-

does-it-work-6515fa916d58

[4] What are smart contracts on blockchain? IBM: website. URL:

https://www.ibm.com/topics/smart-contracts

[5] ARCHANGEL - Trusted Archives of Digital Public Records. Surrey

Blockchain: website. URL:

https://blockchain.surrey.ac.uk/projects/archangel.html

[6] Ma, Y., & Fang, Y. (2020). Current Status, Issues, and Challenges of

Blockchain Applications in Education. International Journal of Emerging

Technologies in Learning (iJET), 15(12), pp. 20–31.

https://doi.org/10.3991/ijet.v15i12.13797

[7] Ullah, N., Mugahed Al-Rahmi, W., Alzahrani, A. I., Alfarraj, O., &

Alblehai, F. M. (2021). Blockchain technology adoption in smart learning

environments. Sustainability, 13(4), 1801.

[8] Sun, H., Wang, X., & Wang, X. (2018). Application of Blockchain

Technology in Online Education. International Journal of Emerging

Technologies in Learning (iJET), 13(10), pp. 252–259.

https://doi.org/10.3991/ijet.v13i10.9455

[9] Yalanetskyi, V. (2023). BLOCKCHAIN-BASED LEARNING

MANAGEMENT SYSTEMS. Electronic Professional Scientific Edition

«Cybersecurity: Education, Science, Technique», 3(19), 56–68.

https://doi.org/10.28925/2663-4023.2023.19.5668

https://www.gemini.com/cryptopedia/glossary
https://www.ibm.com/topics/smart-contracts
https://blockchain.surrey.ac.uk/projects/archangel.html
https://doi.org/10.3991/ijet.v15i12.13797
https://doi.org/10.3991/ijet.v13i10.9455

81

[10] Samanta, A. K., Sarkar, B. B., & Chaki, N. (2021). A blockchain-

based smart contract towards developing secured university examination

system. Journal of Data, Information and Management, 3, 237-249.

[11] Sanni, M. I., & Apriliasari, D. (2021). Blockchain Technology

Application: Authentication System in Digital Education. Aptisi

Transactions on Technopreneurship (ATT), 3(2), 151-163.

[12] What is Educational Platform. IGI Global: website. URL:

https://www.igi-global.com/dictionary/emerging-platform-

education/42260#:~:text=An%20integrated%20set%20of%20interactive,e

nhance%20educational%20delivery%20and%20management

[13] Konnova. O. V. “Using algebraic programming methods to analyze

models of education tokenization”. URL:

http://ekhsuir.kspu.edu/handle/123456789/16484

[14] Algorand Standard Assets (ASAs). Algorand Developer Portal:

website. URL: https://developer.algorand.org/docs/get-details/asa/ (date

of application: October 2023)

[15] The world’s most powerful and sustainable blockchain. Algorand:

website. URL: https://algorand.com/

[16] Chen, J., & Micali, S. (2016). Algorand. arXiv preprint

arXiv:1607.01341.

[17] Introduction. Algorand Developer Portal: website. URL:

https://developer.algorand.org/docs/get-details/dapps/smart-contracts/

(date of application: September 2023)

[18] The smart contract language. Algorand Developer Portal: website.

URL: https://developer.algorand.org/docs/get-details/dapps/avm/teal/

(date of application: September 2023)

[19] js-algorand-sdk. GitHub: website. URL:

https://github.com/algorand/js-algorand-sdk

https://www.igi-global.com/dictionary/emerging-platform-education/42260#:~:text=An%20integrated%20set%20of%20interactive,enhance%20educational%20delivery%20and%20management
https://www.igi-global.com/dictionary/emerging-platform-education/42260#:~:text=An%20integrated%20set%20of%20interactive,enhance%20educational%20delivery%20and%20management
https://www.igi-global.com/dictionary/emerging-platform-education/42260#:~:text=An%20integrated%20set%20of%20interactive,enhance%20educational%20delivery%20and%20management
http://ekhsuir.kspu.edu/handle/123456789/16484
https://developer.algorand.org/docs/get-details/asa/
https://algorand.com/
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/
https://developer.algorand.org/docs/get-details/dapps/avm/teal/
https://github.com/algorand/js-algorand-sdk

82

[20] DeFi to FutureFi. Algorand: website. URL:

https://algorand.com/resources/defi

[21] Algorand dispenser. URL: https://bank.testnet.algorand.network/

[22] Pera wallet. URL: https://perawallet.app/

[23] AlgoExplorer. URL: https://algoexplorer.io/

[24] (Not So) Smart Contracts. Trail of Bits: website. URL:

https://secure-contracts.com/not-so-smart-contracts/algorand/index.html

(date of application: September 2023)

[25] Sun, Z., Luo, X., & Zhang, Y. (2023). Panda: Security analysis of

algorand smart contracts. In 32nd USENIX Security Symposium

(USENIX Security 23) (pp. 1811-1828).

[26] Rekeying. Algorand Developer Portal: website. URL:

https://developer.algorand.org/docs/get-details/accounts/rekey/ (date of

application: September 2023)

[27] Tealer. GitHub: website. URL: https://github.com/crytic/tealer

(date of application: August 2023)

[28] Vara Prasad Bandaru. (2022, February 09). Detector

Documentation. https://github.com/crytic/tealer/wiki/Detector-

Documentation#missing-assetcloseto-field-validation

[29] Bartoletti, M., Bracciali, A., Lepore, C., Scalas, A., & Zunino, R.

(2021). A formal model of Algorand smart contracts. In Financial

Cryptography and Data Security: 25th International Conference, FC 2021,

Virtual Event, March 1–5, 2021, Revised Selected Papers, Part I 25 (pp.

93-114). Springer Berlin Heidelberg.

[30] Corwin Smith. (March, 2023). Formal Verification of smart

contracts. Ethereum: website. URL:

https://ethereum.org/en/developers/docs/smart-contracts/formal-

verification/

https://algorand.com/resources/defi
https://bank.testnet.algorand.network/
https://perawallet.app/
https://algoexplorer.io/
https://secure-contracts.com/not-so-smart-contracts/algorand/index.html
https://developer.algorand.org/docs/get-details/accounts/rekey/
https://github.com/crytic/tealer
https://github.com/crytic/tealer/wiki/Detector-Documentation#missing-assetcloseto-field-validation
https://github.com/crytic/tealer/wiki/Detector-Documentation#missing-assetcloseto-field-validation
https://ethereum.org/en/developers/docs/smart-contracts/formal-verification/
https://ethereum.org/en/developers/docs/smart-contracts/formal-verification/

83

[31] Anne Kenyon. (Febriary 28, 2022). Hello? Contract Calling.

Algorand: website. URL: https://algorand.com/resources/blog/hello-

contract-calling

[32] Rautenberg M. J., Rezabek F. (2022). A Case Study of Security

Vulnerabilities in Smart Contracts. Seminar IITM SS 22, Network

Architectures and Services. URL:

https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2022-11-1/NET-

2022-11-1_10.pdf

[33] Espina V. B. (2020). Symbolic execution. OpenZeppelin: website.

URL: https://forum.openzeppelin.com/t/symbolic-execution/2158

[34] Mohanta, B. K., Panda, S. S., & Jena, D. (2018, July). An overview

of smart contract and use cases in blockchain technology. In 2018 9th

international conference on computing, communication and networking

technologies (ICCCNT) (pp. 1-4). IEEE.

[35] Khan, S. N., Loukil, F., Ghedira-Guegan, C., Benkhelifa, E., &

Bani-Hani, A. (2021). Blockchain smart contracts: Applications,

challenges, and future trends. Peer-to-peer Networking and Applications,

14, 2901-2925.

[36] Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., & Wang, F. Y.

(2019). Blockchain-enabled smart contracts: architecture, applications,

and future trends. IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 49(11), 2266-2277.

[37] Sathya, A. R., Panda, S. K., & Hanumanthakari, S. (2021).

Enabling smart education system using blockchain technology. In

Blockchain Technology: Applications and Challenges (pp. 169-177).

Cham: Springer International Publishing.

[38] Cheng, J. C., Lee, N. Y., Chi, C., & Chen, Y. H. (2018, April).

Blockchain and smart contract for digital certificate. In 2018 IEEE

https://algorand.com/resources/blog/hello-contract-calling
https://algorand.com/resources/blog/hello-contract-calling
https://forum.openzeppelin.com/t/symbolic-execution/2158

84

international conference on applied system invention (ICASI) (pp. 1046-

1051). IEEE.

[39] He, D., Deng, Z., Zhang, Y., Chan, S., Cheng, Y., & Guizani, N.

(2020). Smart contract vulnerability analysis and security audit. IEEE

Network, 34(5), 276-282.

[40] Raimundo, R., & Rosário, A. (2021). Blockchain system in the

higher education. European Journal of Investigation in Health,

Psychology and Education, 11(1), 276-293.

85

Appendix A

