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Probability measure monad on the category of fuzzy ul-

trametric spaces

A. Savchenko∗, M. Zarichnyi

Abstract. It is proved that the probability measure functor comprises a monad on the category
of fuzzy ultrametric spaces and nonexpanding maps. It is also proved that the G-symmetric power
functor admits an extension on the Kleisli category of this monad (i.e. the category of fuzzy
ultrametric spaces and nonexpanding measure-valued maps).
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1. Introduction

The natural generalization of metric spaces can be obtained, if the metric takes its
values not in the set of real numbers, but in some other set. If this other set is that of
probability distributions, we come to the notion of probabilistic metric space [9]. Close
to this concept is that of Menger probabilistic metric spaces. As in probabilistic metric
spaces, the distance between points x, y in the probabilistic metric Menger spaces is a
distribution function Fxy. By axiomatizing properties of the mapping (x, y, t) 7→ Fxy(t),
different authors came to the concept of fuzzy metric space. In this article we use the
term fuzzy metric space in the sense of paper [2]. One of the motivations is the fact is that
such fuzzy metric spaces generate the natural topology, which is metrizable. The theory
of fuzzy metric spaces looks fundamentally richer than the theory of metric spaces - and
this is natural, since any fuzzy metric is a function of three variables. Some phenomena
occurring in the theory of fuzzy metric spaces do not have metric counterparts. As an
example, mention the existence of noncompletable fuzzy metric spaces (see [3]). Note also,
that even for finite sets X the space of fuzzy metrics on the space X is infinite-dimensional,
unlike the space of metrics - the latter is a finite cone.

In [8] the authors considered the fuzzy ultrametrization of the set of probability mea-
sures on fuzzy ultrametric spaces. The aim of this paper is to show that the obtained
probability measure functor in the category of fuzzy ultrametric spaces and nonexpanding
maps determines a monad on this category. The Kleisli category of this monad is that
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of fuzzy ultrametric spaces and measure-valued maps. It is proved that the G-symmetric
power functor SPn

G admits an extension onto the latter category. The natural transfor-
mations of the symmetric power functors in the category of fuzzy ultrametric spaces and
nonexpanding maps are also the natural transformations of the symmetric power functors
in the Kleisli category.

2. Preliminaries

Recall some required definition.
A continuous operation (a, b) 7→ a ∗ b : [0, 1] × [0, 1] → [0, 1] is called a t-norm if it is

associative, commutative, monotone and 1 is a neutral element.
A functionM : X×X×(0,∞) → [0, 1] is called a fuzzy metric on a set X, if it satisfies

the conditions:

(i) M(x, y, t) > 0;

(ii) M(x, y, t) = 1 if and only if x = y;

(iii) M(x, y, t) =M(y, x, t);

(iv) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s);

(v) the function M(x, y,−) : (0,∞) → [0, 1] is continuous.

The value M(x, y, t) can be interpreted as the probability that the distance between x
and y does not exceed t.

A triple (X,M, ∗) is called a fuzzy metric space [2]. If, instead of condition (iv) a fuzzy
metric M : X ×X × (0,∞) → [0, 1] satisfies a stronger condition

(iv′) M(x, y, t) ∗M(y, z, t) ≤M(x, z, t),

then it is called a fuzzy ultrametric.
For every x ∈ X, every r > 0 and t > 0 let B(x, r, t) = {y ∈ X|M(x, y, t) > 1− r} (the

ball of radius r centered at x for t).
It is known that the family of all balls is a base of topology on a fuzzy metric space.
By P (X) we denote the set of probability measures of compact support on a fuzzy

ultrametric space (X,M, ∗). In [8], a fuzzy ultrametric M̂ is defined on the set P (X):

M̂(µ, ν, t) = 1− inf{r > 0|µ(B(x, r, t)) = ν(B(x, r, t),∀x ∈ X}

Let us reformulate this definition. Let Fr,t = Fr,t(X) denote the set of functions on X

which are constant on every ball B(x, r, t).

Lemma 1. For every µ, ν ∈ P (X), we have

M̂(µ, ν, t) = 1− inf

{

r > 0|

∫

X

ϕdµ =

∫

X

ϕdν,∀ϕ ∈ Fr,t(X)

}

.
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The proof follows from the definition of the Lebesgue integral.

For every function ϕ ∈ C(X), define the function ϕ̄ : P (X) → R by the formula
ϕ̄(µ) =

∫

X
ϕdµ, for every measure µ ∈ P (X).

Lemma 2. If ϕ ∈ Fr,t(X), then ϕ̄ ∈ Fr,t(P (X)).

Proof. Let M̂(µ, ν, t) < r. Then the assertion of the lemma follows from the equality
ϕ̄(µ) =

∫

X
ϕdµ =

∫

X
ϕdν = ϕ̄(ν).

Recall that the product of probability measures µ ∈ P (X) and ν ∈ P (Y ) is the measure
µ⊗ν ∈ P (X×Y ) that satisfies the condition: (µ⊗ν)(U ×V ) = µ(U)ν(V ) for every Borel
sets U ⊂ X and V ⊂ Y .

Let n ∈ N and let G be a subgroup of the symmetric group Sn. Recall that the G-
symmetric power of a space X is the quotient space SPn

GX of the productXn = X×...×X
with respect to the equivalence relation ≈:

(x1, ..., xn) ≈ (xσ(1), ..., xσ(n)), σ ∈ G.

The equivalence class of the relation ≈ that contains (x1, ..., xn), is denoted by [x1, ..., xn].
If f : X → Y is a map, then we define the map SPn

Gf : SPn
GX → SPn

GY by the formula

SPn
Gf([x1, ..., xn]) = [f(x1), ..., f(xn)].

If (X,M, ∗) is a fuzzy metric space, then one can define a fuzzy metric M̃ on the set SPn
GX

by the formula:

M̃([x1, ..., xn], [y1, ..., yn], t) = max
σ∈G

min
i
M(xi, yσ(i), t).

Proposition 1. If (X,M, ∗) is a fuzzy ultrametric space, then (SPn
GX, M̃, ∗) is also a

fuzzy ultrametric space.

Proof. We have to check only property (iv’). Let

[x1, ..., xn], [y1, ..., yn], [z1, ..., zn] ∈ SPn
GX,

t > 0.

Then
M̃([x1, ..., xn], [y1, ..., yn], t) ∗ M̃([y1, ..., yn], [z1, ..., zn], t) =
maxσ∈G miniM(xi, yσ(i), t) ∗maxτ∈Gminj M(yj, zτ(j), t).

There exist σ̄, τ̄ ∈ G such that

max
σ∈G

min
i
M(xi, yσ(i), t) = min

i
M(xi, yσ̄(i), t),

max
τ∈G

min
j
M(yj , zτ(j), t) = min

j
M(yj , zτ̄ (j), t).
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Then, for every k we have

M̃([x1, ..., xn], [y1, ..., yn], t) ∗ M̃([y1, ..., yn], [z1, ..., zn], t) =
= miniM(xi, yσ̄(i), t) ∗minj M(yj, zτ̄ (j), t) ≤
≤M(xk, yσ̄(k), t) ∗M(yσ̄(k), zτ̄ (σ̄(k)), t) ≤M(xk, zτ̄(σ̄(k)), t),

whence it follows that

M̃([x1, ..., xn], [y1, ..., yn], t) ∗ M̃([y1, ..., yn], [z1, ..., zn], t) ≤
≤ minkM(xk, zτ̄ (σ̄(k)), t) ≤ maxρ∈G minkM(xk, zρ(k), t) =

= M̃([x1, ..., xn], [z1, ..., zn], t).

For each topological space X by expX denote the set all nonempty compact subsets
of the space X. In [6], for each fuzzy metric space (X,M, ∗) a fuzzy metric Hausdorff on
expX is constructed. Let us recall the definition.

Let x ∈ X, A ∈ expX. Let M(x,A, t) = supa∈AM(x, a, t). Then for every A,B ∈
expX we have

MH(A,B, t) = min{ inf
a∈A

M(a,B, t), inf
b∈B

M(b,A, t)}.

Proposition 2. If (X,M, ∗) is a fuzzy metric space, then

MH(A,B, t) = 1− inf{r > 0|
A ∩B(x, r, t) 6= ∅ ⇔ B ∩B(x, r, t) 6= ∅,∀x ∈ X}.

(1)

Proof. Denote the right hand side of (1) by M0. Let M0 < R. Then for every
a ∈ A there exists b ∈ B such that b ∈ B(x, 1 − R, t) and therefore M(a,B, t) =
supb∈BM(a, b, t) ≤ 1 − (1 − R) = R. In turn, infa∈A supb∈B M(a, b, t) ≤ R. Arguing
similarly we conclude that MH(A,B, t) ≤ R. Therefore, MH(A,B, t) ≤M0.

The opposite inequality is established similarly.

Let (Xi,Mi, ∗), i = 1, 2, be fuzzy metric spaces. A map f : X1 → X2 is called non-
expanding if for every x, y ∈ X1 and every t > 0 we have M2(f(x), f(y), t) ≥ M1(x, y, t).
Fuzzy metric spaces and their nonexpanding maps form a category that we denote by
FMS(∗). We denote by UFMS(∗) the subcategory of the category FMS(∗) whose ob-
jects are ultrametric spaces.

Proposition 3. Let (Xi,Mi, ∗), i = 1, 2, be fuzzy metric spaces and f : X1 → X2 be a
nonexpanding map. Then the map SPn

Gf : SPn
GX1 → SPn

GX2 is also nonexpanding.

Proof. See [7].

We therefore obtain that SPn
G is a functor in the category FMS(∗). From Proposition

3 it also follows that SPn
G is a functor in the category UFMS(∗).

Recall that the support of a probability measure µ ∈ P (X) is the minimal closed set
A ⊂ X satisfying the condition µ(X\A) = 0. The support of µ is denoted by supp(µ).

Theorem 1. Let (X,M, ∗) be a fuzzy metric space. Then the map supp : P (X) → expX
is continuous.
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Proof. We use formula (1). Let M̂(µ, ν, t) > 1−R. Then there exists r < R for which
µ(B(x, r, t)) = ν(B(x, r, t),∀x ∈ X.

Let B(y, r, t)∩supp(µ) 6= ∅, then µ(B(y, r, t)) 6= ∅, and therefore ν(B(y, r, t)) 6= ∅,
whence B(y, r, t) ∩ supp(ν) 6= ∅. Arguing similarly we obtain

B(y, r, t) ∩ supp(µ) 6= ∅ ⇔ B(y, r, t) ∩ supp(ν) 6= ∅,

and therefore
MH(supp(µ), supp(ν), t) > 1− r > 1−R,

whence the required inequality follows.

In other words, P is a functor with continuous supports in the category UFMS(∗).
In fact, it is easy to see that supp is a natural transformation of the functor P into the
functor exp. Now for every M ∈ P2(X) define the map ψX(M) : C(X) → R by the
formula: ψX(M)(ϕ) =M(ϕ̄).

We are going to show that the support of the functional ψX(M) : C(X) → R is
compact. Recall that the support of a functional f : C(X) → R is the minimal closed set
A ⊂ X such that f(ϕ) = f(ψ), whenever ϕ|A = ψ|A. Directly from this definition it
follows that the support of the functional ψX(M) is equal to the set A = ∪{supp(µ)|µ ∈
supp(M)}. Theorem 1 and the fact that the union of any compact family of compact sets
is again compact imply that the set A is compact.

Now it is easy to see that the functional ψX(M) : C(X) → R is linear, is positive and
regular, i.e., of norm 1, therefore is an element of P (X).

Proposition 4. The map ψX : P 2(X) → P (X) is nonexpanding. Here, the fuzzy metric
ˆ̂
M is considered on the set P 2(X).

Proof. Let N1, N2 ∈ P 2(X) and
ˆ̂
M(N1, N2, t) > 1 − R, then for every r > R, every

t > 0 and every ϕ ∈ Fr,t(X), by Lemma 2 we have

ψX(N1)(ϕ) = N1(ϕ̄) = N2(ϕ̄) = ψX(N2)(ϕ).

This implies the inequality M̂ (ψX(N1), ψX (N2), t) > 1−R.

It is easy to show that ψ = (ψX) is a natural transformation of the functor P 2 into
the functor P in the category UFMS(∗).

3. Monads in the category of fuzzy ultrametric spaces

Recall some definitions from the category theory needed in the future. See, e.g., [1] for
details. A monad in the category C is a triple T = (T, η, µ) that consists of an endofunctor
T in the category C and the natural transformations η : 1C → T , µ : T 2 → T such that
µT (η) = µηT = 1T and µT (µ) = µµT .

The Kleisli category of a monad T = (T, η, µ) in a category C is the category CT

defined by the conditions:
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1. the class of objects of CT coincides with that of C;

2. the set of morphisms from A to B in the category CT coincides with the set of
morphisms from A to T (B) in the category C;

3. the composition g ∗ f of morphisms f : A→ B and g : B → C in the category CT is
µCT (g)f .

Denote by I : C → CT the functor which is constant on the objects and sends f : A→
B to ηBf .

Let F : C → C be a functor. We say that a functor F̄ : CT → CT is an extension of a
functor F onto the category CT, if IF = F̄ I.

We will need statement that makes continued existence criterion functors on the cat-
egory Kleisli monad.

Proposition 5. There is a one-to-one correspondence between the extensions of a functor
F : C → C onto the Kleisli category CT of the monad T = (T, η, µ) in the category C and
the natural transformations ξ : FT → TF satisfying the conditions:

1) ξ ◦ Fη = ηF ;
2) µF ◦ ξT ◦ Tξ = ξ ◦ Fµ.

Proof. See in [11].

Theorem 2. The triple P= (P, δ, ψ) is a monad in the category UFMS(∗).

Proof. Follows the schema of the proof of the corresponding result in [4].

The following result is a counterpart of one result from [4], which is proved herein for
ultrametric spaces.

Theorem 3. The G-symmetric power functor SPn
G in the category UFMS(∗) has an

extension onto the probability measure monad.

Proof. For every fuzzy metric spaceX, denote the map ξX : SPn
G(P (X)) → P (SPn

G(X))
by the formula:

ξX([µ1, ..., µn]) = P (πG)(µ1 ⊗ ...⊗ µn),

where πG : Xn → SPn
G(X) is the quotient map.

Let [µ1, ..., µn], [ν1, ..., νn] ∈ SPn
GP (X) and M̂([µ1, ..., µn], [ν1, ..., νn], t) > 1−R. Then

there exists σ ∈ G such that mini M̂(µi, νσ(i), t) > 1 − R, and therefore, for every i =

1, ..., n, we have M̂(µi, νσ(i), t) > 1−R. Show that

M̂(µ1 ⊗ ...⊗ µn, νσ(1) ⊗ ...⊗ νσ(n), t) > 1−R.

Since B′((x1, ..., xn), r, t) =
n
∏

i=1
B(xi, r, t) (here B′ denotes the ball in the space Xn), the

equalities µi(B(xi, r, t)) = νσ(i)(B(xi, r, t)), i = 1, ..., n, imply

(µ1 ⊗ ...⊗ µn)B
′((x1, ..., xn), r, t) =

n
∏

i=1
µi(B(xi, r, t)) =

n
∏

i=1
νσ(i)(B(xi, r, t)) =

= (νσ(1) ⊗ ...⊗ νσ(n))B
′((x1, ..., xn), r, t),
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and we obtain the required equality. Since the map πG is nonexpanding, the map P (πG)
is also nonexpanding. Therefore, the map ξX is nonexpanding, i.e. is a morphism of the
category UFMS(∗).

The verification that the natural transformation ξ = (ξX) satisfies the properties of
Proposition 5 follows the arguments of [12].

Theorem 4. Let H ⊂ G be subgroups of the symmetric group Sn. A natural transforma-
tion ζGH : SPn

G → SPn
H in the category UFMS(∗) is also a natural transformation of the

extended functors SPn
G, SP

n
H in the category UFMS(∗)P.

Proof. The proof follows that of Proposition 5.6.9 from [10].

Finally, we formulate an open problem of finding counterparts of the results of this
paper for fuzzy metric spaces in the sense of [5]. This notion is slightly less restrictive
as in condition (v) it is required only that the function M(x, y,−) : (0,∞) → [0, 1] be
left-continuous.
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