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Geodesic mappings of compact
quasi-Einstein spaces, I

V. Kiosak, A. Savchenko, G. Kovalova

Abstract. The paper treats a particular type of pseudo-Riemannian spaces,
namely quasi-Einstein spaces with gradient defining vector. These spaces are
a generalization of well-known Einstein spaces. There are three types of these
spaces that admit locally geodesic mappings. Authors proved a “theorem of
disappearance” for compact quasi-Einstein spaces of main type.

Amnoranisi. B poboTi mocimKyeThes CHemaabHuil TUTT TICeBI0PIMAHOBIX
[IPOCTOPIB — Mativice etHwmetnosi npocmopu 3 2padiewmHum 3a0a04UM 6e-
xmopom. Li mpocropu y3arajbHIOIOTH Bijtomi nmpocropu Eituinreiina, saki xa-
PaKTepu3yIOThCA TUM, IO TeH30p EifHmreltna nopisHIoe Hym0. B Maiixke eit-
IMTEHHOBUX TpocTopax Ten3op EitHimreiina BiAXUIsg€ThCA Bi Hy/Id HA IESIKY
BEeJIMYUHY, Ky Ha3uBaloTh JedekToM Tenzopa Eitnmreitna. fAxmo medexrr
ten3opa Eitxmnreiina e gesakuit mpoctnit 6iBeKTOp, TO IPOCTOPU HA3UBAIOTH
MaiiKe eMHIIITeHOBUME 3 TPAJIIEHTHUM 33/ IaI09UM BEKTOPOM.

OCHOBHUM METOJIOM MOJIEIIOBaHHs (Di3MYHUX Ta IHIMUX IIPOIECIB, IO Xa-
PaKTEPHU3yIOThCS 3a JIOMOMOIOIO IICEBJIOPIMAHOBHX IIPOCTODIB, € iX Bimobpa-
JKEeHHd Ha TOW YM iHIIUI CIeriaJbHUANl TUIT MPOCTOPiB. Bararbma aBropaMmu
PO3IVIsAIaICh KOHPOPMHI Ta Te0/Ie3ndHi BiToOparkeHHs Maiixke elHIITeitHO-
BHUX IIPOCTOPIB.

B wmiit poboTi BUBUaEMO Teoe3ndHi BioOparkeHHs MaiiKe efHIITeiHOBUX
IIPOCTOPIB 3 TPAIEHTHUM 33JIAI0YUM BEKTOPOM 3a JIOITOMOTOIO JIiHIHOT (op-
MU OCHOBHUX DiBHSIHB TeOPil reo/Ie3nIHuX BimoOparkeHb. Uepe3 pi3HOTO TH-
1y oOMeXKeHHsI aJIredpalaHoro Ta udepeHIliajIbHOr0 XapakTepy MaiiKe eiH-
IMTEHHOBI IPOCTOPH, fAKi JIOIYCKAIOTh HETPHUBIAJIbHI reo/1e3n4dHi Bi0OparkeH-
Hsl, pO30UTI Ha TPW TUMW: OCHOBHUM, CIIEIIAJbHII Ta OCOOJMBHIA.

BukopucToByoun moHATTS re0Ae3UIHUX TOYOK, IPUXOINMO 0 POSTIIILY
reoJIe3NIHUX BitoOparkeHb “B mijsiomy”. st oTpuMaHHs pPe3y/IbTaTiB B KOM-
MAKTHUX PIMAHOBUX IMPOCTOPAaX 3aCTOCOBYEMO Teopemy Xormda-Boxmepa B
Buris, akuii 3anpononysasia O. M. CuntokoBa. Teopemu 1po He icHyBan-
He “B 1i7loMy” IEBHHUX THIIB IPOCTOPIB HA3MBAIOTH “TEOpEMaMU 3HUKHEHHS .
st KoMIakTHUX Maiike efHIITEIHOBUX ITPOCTOPIB OCHOBHOT'O THUILY JIOBEIE-
HO “TeopemMu 3HUKHEeHHs. A came, KOMIIAKTHUI MajizKe efHIITEHIB IpocTip
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OCHOBHOTI'O TUITY 3 JI0JaTHO BU3HAYECHOIO METPUKOIO Ta 10/aTHOIO CKaJIAPHOIO

KPUBHHOIO He JIOIIyCKa€ HETPUBIAJIBHUX IeOJe3NYHUX BiToOOpaskeHb ‘B IIijIO-
v}

My’
Orpumani pe3ysbraru J03BOJISIOTH €(DEKTUBHO IIPOIOBAKUTU JOCIIIPKEH-
Hsl, BUBUUTH OCOOJIMBUIA Ta CIEIiaJbHUN TUIHM Maii?Ke efHITTeHHOBUX MPOC-
TOPiB, & TAKOXK, BUKOPUCTOBYIOYN BiIOMi METOIM 3pOOUTH BUCHOBKH ITPO T'€O-
Je3udHi BigoOpaskeHHsl MOBHUX ITICEBJOpiMaHoBUX mpocTopis. Jocsimkerts
BEJLyThCd B T€H30DHI dhopMi B KJIACi JOCTATHBO IIAJKUX (DYHKILI.

INTRODUCTION

We will study a pseudo-Riemannian space V,,, (n > 2), with a metric
tensor g;; and construct an Einstein tensor in this space. Such a tensor is
defined by a well-known expression:

Eij := Rij — £g4,
where R;; := R% o
and R?jk is the Riemannian tensor.

The defect of Einstein tensor [6] is a tensor D;;, defined by the equation

Eij — Dy; =0.

When selecting a special type of tensor D;;, one can select a particular
type of special pseudo-Riemannian spaces. For example, if D;; is a linear
combination of the metric tensor and the covariant derivative of a certain
vector, then taking into account coefficients of this combination, one can
obtain ¢(Ric)-spaces or Ricci solitons [3, 4].

When D;; is represented by a simple bivector, called determining, then
the space is quasi-Einstein [8].

Mapping is a main way for modeling of the above-mentioned spaces. We
conducted a research aimed at conformal and geodesic mappings of pseudo-
Riemannian spaces with various types of deformation tensor of Einstein
tensor [2, 5, 9].

This work treats geodesic mappings of quasi-Finstein spaces with gradi-
ent defining vector. These spaces are subdivided into three types: main,
particular and special.

The obtained local results are applied to the study of compact quasi-
Einstein spaces of main type “in the large”.

is the Ricci tensor, R = Raggaﬁ is the scalar curvature,

1. BASIC EQUATIONS OF GEODESIC MAPPINGS THEORY

Bijection of points of pseudo-Riemannian spaces V;, with a metric tensor
gij and V,, with a metric tensor g;; is called a geodesic mapping whenever
each geodesic line V,, is transformed into a geodesic line V;,.
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Pseudo-Riemannian spaces V;, and V,, admitting a geodesic mapping bet-
ween them are called spaces in geodesic correspondence or belonging to the
same geodesic class.

The following identity [13] gives a necessary and sufficient condition for
defining a bijective geodesic mapping between pseudo-Riemannian spaces
V, and V,,:

mh h h h
i =10+ idf + 9507, (1.1)
or otherwise, taking into account a covariant constancy of a metric tensor,
Gij:k = 2¢kGij + igik + ©iGik, (1.2)
here ¢; is a certain (necessarily gradient) vector, F?j and f‘zhj are the Christof-
fel symbols of V;, and V,, respectively, (5? is a Kronecker symbols, and

comma ““ is a sign of covariant derivatives in respect to the connection of
V.

Equations (1.1) and (1.2) are equivalent, and they are necessary and
sufficient existence of a bijective geodesic correspondence between pseudo-
Riemannian spaces V,, and V,.

The following relations a necessary for an existence of a geodesic map-
ping:

Rl = Ry + 0ii0f — i),
Rij = R;j + (n— 1)(,02-]-,
where ¢;; = ¢; j — pipj, and R?jk and R;j, are respectively Riemannian
and Ricci tensors.

A geodesic mapping distinct from homothety is called non-trivial.

A pseudo-Riemannian space V,, admits a non-trivial geodesic map if and
only if it contains a solution of a system of differential equations in respect
to the tensor a;; = aj; # cgi; and the vector \; = A\; # 0. This system is
called a linear form of main equations.

Linear form of main equations for geodesic mappings theory can be writ-
ten as follows [13]:

aijk = Nigjk + Njgik, (1.3)
nXij = 1gij + 0ei RS — aapR%;”, (1.4)
where p = )\aﬁgaﬂ, R; = Ryjg™, and Rhijk = thjaga' k
It follows from the latter equations that
(n— D) = 2(n+ AR + aqs(2R% " — R* ). (1.5)
Solutions (1.2) and (1.3) are related by the following identity:

a;j = 62¢gaﬁgo¢igﬁj7
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Ai = —ewgaﬁgai%-

The system of equations (1.3), (1.4), and (1.5) gives a possibility to
answer the question whether a certain pseudo-Riemannian space V,, admits
a geodesic mapping onto a pseudo-Riemannian space V,,. This problem is
reduced to finding the integrability conditions of these equations and their
differential extensions. Such a system is called a system of main equations
of theory of geodesic mappings [10, 7, 12].

2. BASIC EQUATIONS OF THEORY OF GEODESIC MAPPINGS FOR
QUASI-EINSTEIN SPACES

We will study geodesic mappings of quasi-Einstein spaces, namely pseudo-
Riemannian spaces V,,(n > 2), satisfying the following conditions:
R
Rij = —gij + Uilj, (2.1)
where U; is defined as gradient vector, or otherwise
Uy=U; =0oU.

The definition implies that the vector U; is necessarily isotropic, [8].
Differentiating (2.1) we get

Rijk = R ygij + Ui gUj + UiUj . (2.2)
Contracting indices transforms it into
R, =1R;+ U, U;,
or
R; = 22U, U;. (2.3)
Then (2.2) can be written as follows:
Rijk = 25U Usgij + Uik Us + UUj.
Symmetrizing (1.4) we will see that
an Ry — aor R = 0. (2.4)
Hence, taking into account (2.1), we can rewrite (2.4) as follows:
UU%q; = UjaqtU®.
The latter implies that
U%ani = pU;, (2.5)
where p = aagUaﬁﬁ and £ is a certain vector chosen so that U,&® = 1.
Thus, we have established the following

Theorem 2.1. If a quasi-Finstein space V, admits a non-trivial geodesic
mapping, then the vector U; is an eigenvector of the matriz of tensor a;;.
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Let us prove the following

Theorem 2.2. If a quasi-Finstein space V,, admits a non-trivial geodesic
mappings, then the vectors U; and \; are orthogonal each to other, namely

UM\ = 0. (2.6)
Proof. Differentiating (2.5) and taking into account (1.3) we get
U jai + U Aagij + NiUj = p ;Ui + pU; ;. (2.7)
Multiplying (2.7) by isotropic vector U; and contracting indices we obtain
22U\ U; = 0.
Since the vector U; never is zero, the theorem is proved. ([l

Taking into account the latter statement, one can rewrite (2.7) as follows
U‘f‘jam = p,jUi + pUi’j — )‘ZU] (28)
Moreover, multiplying (2.8) by U; and af}, we get the following

Lemma 2.3. If a quasi-Einstein space admits non-trivial geodesic map-
pings, then the following condition is true

1
paU =0, paai — ppi =c Ui,
1
where p; = p; = 0ip, ¢ = (afpa — ppp)€P, and Uné® = 1. O
We will now prove the following

Theorem 2.4. If a quasi-FEinstein space admits non-trivial geodesic map-
pings, then the vector \; satisfies the following condition:

1
)\O‘aai =71U;+ 7')\1', (2.9)
where T is a certain invariant chosen in such a way that
T:=2(n— 1)Aa5)\ofﬁ7 7= —p_(i,
n —

and £ is a vector that complies to condition Uny&® = 1.
Proof. By differentiating
Aai RSy + i Rigy = Nugje + Njgi — Mejgis — Akigiis (2.10)
where \;; = A; j and taking to account (1.3), we obtain
Aa B 9im + NiBRmjkt + AR Gim + Aj Bmikl + 0ai Ry m + Qo Rijy m =
= Ni;m3jk + NjmGik — Mei,m3jl — Mkjmil-
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Contracting indices in the latter expression with respect to [ and m, we can
write down the expression

AR + AaRS + NiRjk + N Ri + af Ry 5+ aS Ry, 5 =
= Ao, “Gik + N, Gik — Akij — Mkjie

Taking into account R, , = R;;j i — R j and (2.1), we get

ko
Ao R + MRS + iRk + A Rig+
+ U;j (pkUz' + pUi = AiUs + 727U pgii — %Ua?‘aik> -
— pUiUk + Ui (prUs + pUsk = AUk + 227U, pgis — 25U, aze ) —
— pUUki = Moy, “9jk + Aaj, " Gik — Akij — Mkjie
Hence
AaR% + Aa RS + MRk + A R+
+Uj (pkU AUk + 755U pgri — gan?‘aik) +
+U; (,OkUj — NUk + 227U,% pgj — 27U, ajk) -
= Ao, “Gik + N, Gik — Akij — Mkjie

Alternating the latter by j, k, we get the equation

DaRfy = (Mo = BN = 225U, °U; ) gu—
- <>‘ak‘7 — Ak~ %Ua,aUk) gij+
+ 2Ui(Ukpj — Ujpk) + %Ujaik — %Ukazj.
Contraction transforms it into

a 2 [
)‘aj _7)‘ - 71Ua, Uj_

n(n 1))\ + o (Z:L{>UJ
The latter means that

A lej <UiUkpj —UjUipi) + U Aij — U A+
. (2.11)
+ aten (Migik — Akgii),

Aij = ﬁ <aij + <%) 9ji> :

here
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Let us multiply (2.11) by A’ and contract it with respect to i. Then the
expression can be written:
UA*Aqj — UjA* Ay, = 0.
Thus,
)\aAai =

Ui

where T is a certain invariant, such that 7 := 2(n — 1) A,sA%?, and ¢! is a
vector complying the condition Uy,&® = 1.
Thus, (2.9) is true which proves Theorem 2.4. O

Multiplying (2.10) by A!, contracting it with respect to I, and taking into
account (2.11), we obtain

%(paa?UkUj — pijkUi) + a?AakUj — pUiAkj-i-
+ iy (a8 Aagrs — Ajair) + 5(paaf UlUi — ppiUxUj )+ (2.12)

+ af AarUi — pU; Ay + n(n 17 (Aa@f gri — Aiajk) =

= A" Aaigjk + A Aaj ik — Ajdi — AkiAj
Alternate the latter expressions by j and k, then exchange positions of
indexes i <> k, and add the result to (2.12). Then we will get
% éUiUkUj + Ui(a?Aak — pAkj)+

+ %(Aaaf‘g;ﬂ — X)) = A Aaigik — Aji- (2.13)

Contracting this with ¢7%, we obtain

a —a 2
A Aai — n(n— 1))\ Aai + 2(n 1 (p ) Ui = pAi+ 7U;,

n—1
where
aB

H= % ()‘aﬁ - %aaﬁ) g
2 a
7= 7211(;71) (aﬁam + am(p - p)) B,
i (Akj — %akj - ,ngj> =

=U; ( Sn=T) (a aak + (n 1 p) Qjj— ggk]) + % éUkUJ) .

Contracting the latter expression with a vector ¢* chosen in such a way that
£“U, = 1, we can write down the expression

2 1
m (a ok + (n T p) agj— Tgkj> + % cUU; =
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=0 <>\kj - ﬁakj - Mgkj) ;

where v = \,£%. Therefore

(A —v Ui) (Mgksj — Agj + %akj) =0.
Thus, either
Nig = 19ij F Ty G (2.14)
or
X —oU; =0 (2.15)

is true. So, we proved the following

Theorem 2.5. If a quasi-Einstein space admits non-trivial geodesic map-
pings, then it satisfies one of the conditions (2.14) or (2.15).

According to the latter statement, quasi-Einstein spaces can be subdi-
vided into three types:

Main type: when (2.14) is true, while (2.15) is not true;
Particular type: when (2.15) is true but (2.14) is not;
Special type: when both equations (2.14) and (2.15) are true.

Further, we are going to treat different types of quasi-Einstein spaces
consequently.

3. QUASI-EINSTEIN SPACES OF THE MAIN TYPE

In this section we will study quasi-Einstein spaces of the main type.
These are pseudo-Riemannian spaces satisfying conditions (1.3), (2.1) and
(2.14). By differentiating (2.14), we can obtain the following:

Aijk = MkGij + %()\igjk + Ajgir) + mR,kazj,

where py, = p1 = O p.
Alternating and taking into account Ricci identity and (1.1) we get
Aa R, = prgij — 1jgik + %O\jgik — A\egij)+
+ ﬁ i Uaf"(Ukaij - Ujaik).

n—1
Contracting and taking into account (2.1) and (2.6), we obtain
Exe = (n— Dk — B + ﬁUafy(a — p)Uk,
or

2U0,% 1
M = n(iljl)/\k - (n—f)Q TUg. (31)

The following is true:
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Lemma 3.1. The system of equations (1.3), (2.14), (3.1) has a solution in
quasi-Einstein spaces belonging to the main type.

Taking to account (3.1) one can write down integrability conditions for
equations (1.3) and (2.14) in the following form:

aaiY iy + aajYiy = 0, (32)

20, 1 1
AaYi = =12 5 (Uraij — Ujag— TUkgij+ TU;gik), (3.3)

where
R h h
e = R — ey (Okgij — 67 9ir)
is a tensor of concircular curvature.
Multiplying (3.2) by A and taking to account (3.3), we get

2U,~
(n— 1)2 (Uk(pazj aaza Tpgzﬂ- Taz])+

1 1
+ Uj(pasy, — aniag — Tpgix+ Ta)) = 0.
The latter implies that either U, = 0 and pseudo-Riemannian space has
a scalar curvature because of (2.3), o

1 1
Uk (paij — aqiaf Tpngr Tam) +Uj(pair — aaiay, — Tpgir+ Tag) = 0. (3.4)

Alternating the latter by indices j, k, we will exchange the numeration of
indices ¢ < k and add the resulting expression to (3.4). This will yield

aniaj = (p+ T)CLZ]— Tpg” (3.5)
Differentiating this further we obtain
1 1 1
/\aajo'lgz’k + )\Z-ajk + )\aaf‘gjk + )\jaik = (p,k-i- T7k)aij — (T,kp+ Tp,k)gij. (36)
Multiplying (3.6) by U’ and contracting it with respect to i we get
1 1 1 1
(T +P) AUk = Uj(p(ppt+ 7 ) — (T ot 7ok) — TUk). (3.7)
Wrapping it with a vector &/ chosen in such a way that U,&® = 1, we obtain
1 1 1 1
p(opt T, = (T o+ 7pk) — TUR = (T + p)oU. (3-8)
Substituting (3.8) into (3.7) we get
1
(T+ p)Ur(A; — vU;) = 0.
The identity A; = vU; leads us to another types of quasi-Einstein spaces

which will be treated later. Then we put T = —p and the equation (3.5)
can be re-written in the following way

aaza = p Gij, (39)
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and the equation (3.6) can be changed to
Aal§ Gik + Nitjk + Aaaf gk + Ajaik = 2pprgij- (3.10)
Contract the latter equation with g% :
A o0 =n - 2ppy, (3.11)
Contracting the same equation with ¢** we obtain
(n +2)Aaaj + adj = 2ppg. (3.12)
Multiplying (3.11) by n and subtracting it from (3.12) we obtain
(n(n +2) —4)Aqaj +ank; =0,

or

Al = YA, (3.13)
where

Vi )=

Then (3.11) implies

2Pk = 2y Ak
whence (3.10) can be written as follows:

YAiGik + Ni@jr + YAigik + Nk = TYA\kgij. (3.14)

Multiplying (3.14) by a* we obtain
0 =92 (3.15)

Then, by multiplying (3.14) by af,, contracting it with i, and taking to
account (3.9), (3.13) and (3.15), we can transform it into

Ajaik + Mgk + YNigik + YA gk = 2ag;. (3.16)

Finally subtract (3.16) from (3.14). Then we will get a contradiction
because pseudo-Riemannian space admits non-trivial geodesic mappings,
namely a;; # cgi;.

Thus, we have proved the following

Theorem 3.2. Fach quasi-Einstein pseudo-Riemannian space of the main
type has a constant curvature and its invariant p satisfies the following
condition

L = n(flifjl)Ak. (3.17)

In next section we will study compact quasi-Einstein spaces “in the large”

[1]-
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4. GEODESIC MAPPINGS OF COMPACT QUASI-EINSTEIN SPACES OF THE
MAIN TYPE

Consider a Hausdorff space such that for each point there exists neigh-
borhood homeomorphic to a certain domain R™. Due to [17], such a space
admits a pseudo-Riemannian metric turning it into a pseudo-Riemannian
space V. A point M is called a geodesic point of a curve L whenever a
tangent vector to L at M satisfies the following condition:

™ = 95+ Ty’
A curve consisting of geodesic points only is called a geodesic line belonging
to the above-mentioned space. Diffeomorphism that maps every geodesic
line Vj, to another geodesic line V,,, is called a geodesic mapping “in the
large”.

When geodesics from a certain neighborhood of a point are mapped
to a certain neighborhood of another point, then the map is called local
geodesic. Evidently, every geodesic mapping “in the large” is also a local
geodesic mapping.

The opposite is not true. On the contrary, there are important classes of
spaces admitting local geodesic mappings but not admitting mappings “in
the large”.

Theorems that state non-existence “in the large” of a certain type of
spaces are called disappearance theorems, [11]. We will proceed with proof
of a disappearance theorem for the compact quasi-Einstein spaces of the
main type, starting with the following

Lemma 4.1. Let V,, be a pseudo-Riemannian quasi-Einstein space and \;
be a vector of constant length. Then the scalar curvature of V, equals to
Z€T0.

Proof. Suppose that \; that complies with the (2.14) has a constant length,
namely

AaAt = A,
where A is a certain constant. By differentiating, we obtain
Aa)\aﬂ‘ == 0

Taking into account (2.14), it is easy to see that

R o

Covariant derivative of the latter expression after substitution of (1.3),
(2.14), and (3.17) can be written as follows:

3R 2 AR 2uR R2
m/\i)\j + (u + m) gij + %azj + mama}l =0. (4.1)
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Multiply the latter equation by A" and contract it with respect to i. Then
we will get

4RA  _
n(n—1) — 0.

In other words, at least one of the constants R and A should equals zero.
Suppose that a constant A equals 0. Then equations (4.1) can be re-
written as follows:

TCES N + 1295 + s s + el =0, (4.2)
Multiplying (4.2) by U? and contracting it with respect to i, we will get
2uR Rp 2
2 pRp _
Wt sl T <n(n — 1)> = 0. (4.3)

Differentiating (4.2) and contracting the resulting expression with U?, we

see that
2Rp
2R (14 2 ) =0.
n(n—1) ( + n(n —1) 0
)

Suppose 1 + % = 0.
According to the above statement and the equation (4.3), u = %. This

implies that the scalar curvature vanished.
This proves that in all the cases R = 0. Lemma is completed. (]

Let us return back to the issue of geodesic mappings “in the large”.

Theorem 4.2. A compact quasi-Finstein space of main type with positive
definite metric and positive scalar curvature does not admit non-trivial
geodesic mappings “in the large”.

O.M. Sinyukova suggested to apply the Hopf-Bochner theorem [16] in
a new formulation: if a compact pseudo-Riemannian space V, contains a
positive definite invariant quadratic form Gaﬁnang, then for a function ¢(x)
the operator

Ap =G ap
does not change a sign, so ¢ = const, and A¢ = 0, [14, 15]. A quasi-
Einstein space of main type has an invariant
¢ = AaA?,
whence
gbi = 2)\(171')\0‘, (lsz',j = 2()\0”;)\3- + )\a,ij)\a).

Applying equations (2.14) and (3.17), we can see that

9" Niag = S B
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Taking this into account, we obtain

2(n+3 « ot
Ap = 2L RAN + 22X, 5227,

Since the matrix form V,, is positive definite and R > 0, it follows that
A¢ = 0. Then Hopf-Bochner theorem implies that ¢ = const, and A¢ = 0.
Applying Lemma 4.1 we can see that the theorem is proven.

5. CONCLUSION

On studying geodesic mappings of quasi-Einstein spaces with gradient
defining vector, it became clear that locally they can be subdivided in three
types depending on the existence of solutions of certain equations. Spaces
of every type admit non-trivial geodesic mappings.

The “disappearance theorem” is proved for compact quasi-Einstein spaces
of main type with additional conditions imposed on metrics and scalar
curvature.
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