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Abstract. We have studied the conformal mappings of special quasi-Einstein spaces. When pseudo-Riemannian space Vn permits
concircular mapping onto the quasi-Einstein space of the first type, then this space is an Einstein space. There is no quasi-Einstein
space of the first type that differs from Einstein spaces permitting concircular mappings.

INTRODUCTION

A pseudo-Riemannian space Vn with a metric tensor gi j is called an Einstein space, if the following conditions hold
for the given space:

Ei j = 0, (1)

where Ei j — the Einstein tensor, Ei j = Ri j −
R
n

gi j, Ri j — the Ricci tensor, R — the scalar curvature of the space Vn

[2, 4].
Einstein spaces can be generalized in several ways. In particular, there are spaces having the Einstein tensor that

differs from zero by a value pre-defined in some way

Ei j − Di j = 0, (2)

here Di j — the certain tensor, called further the defect of Einstein tensor [1, 8, 9].
The limitations imposed on the defect of Einstein tensor can be either algebraic or differential depending on

considerations grounded in physic reality.
The name of “quasi-Einstein” space was applied for the first time in order to denote the spaces, where:

Di j = RαiRαj − RαβR
α β
. i j . , (3)

where Ri
j = gαiRα j, Rh k

i j = Rαi jβgαhgβk, Ri jkl — Riemannian tensor Vn, gi j — elements of reverse matrix of metrics
tensor gi j.

We shall say that these spaces are quasi-Einstein spaces of the first type.
This work aims at the study of conformal mappings of quasi-Einstein spaces of the first type.
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CONFORMAL MAPPINGS ONTO QUASI-EINSTEIN SPACES OF THE FIRST TYPE

Let Vn (n > 2) be the pseudo-Riemannian space with metric tensor gi j(x) and V̄n be another pseudo-Riemannian space
with metric tensor ḡi j(x). A conformal mapping is a bijection between points of two spaces Vn and V̄n that

ḡi j(x) = e2σ(x)gi j(x), (4)

where σ— a function.
If σ is a constant, then the mapping is homothetic. Further, if it will not be specified, we will treat non-homothetic

mappings. Objects of the space V̄n that is conformly correspondent to the space Vn will be designated by a bar.
The (4) implies the following:

ḡi j = e−2σgi j.

The following formulae are true for Christoffel symbols:

Γ̄h
i j = Γ

h
i j + δ

h
i σ j + δ

h
jσi − σhgi j; (5)

For a Riemannian tensor

R̄h
i jk = Rh

i jk + δ
h
kσi j − δhjσik + ghα(σαkgi j − σα jgik) + ∆1σ(δhkgi j − δhjgik); (6)

For a Ricci tensor
R̄i j = Ri j + (n − 2)σi j + (∆2σ + (n − 2)∆1σ) gi j; (7)

For a scalar curvature
R̄ = e−2σ (R + 2(n − 1)∆2σ + (n − 1)(n − 2)∆1σ) . (8)

Here and further σi ≡
∂σ

∂xi ≡ σ,i, σh = σαgαh,

σi j = σ,i j − σ,iσ, j, (9)

∆1σ and ∆2σ are the first and second symbols of Beltrami defined in the following way:

∆1σ = gαβσ,ασ,β; ∆2σ = gαβσ,αβ,

comma “,” is a sign of covariant derivative by the connection Vn [4, 12, 13].
Let us treat conformal mappings of quasi-Einstein spaces of the first type.
Taking into account the equation (2) and (3), we will denote

Ai j = Ei j − RαiRαj + RαβR
α β
i j . (10)

A change of object with respect to the given mapping is called a deformation.
Let us prove

Theorem 1. If the pseudo-Riemannian space Vn is mapped conformally onto the pseudo-Riemannian space V̄n
then a deformation of tensor Ai j meets a condition

Āi j − Ai j =
1
τDi j +

2
τσαβR

α β
i j +

3
τ(σαiRαj + σα jRαi ) +

4
τσαiσ

α
j +

5
τσi j +

6
τRi j +

7
τ gi j, (11)

where
i
τ (i = 1, 2, . . . , 7) — invariants.

Proof.
Let us calculate the change of the components of these equations in the course of conformal mappings. For

Einstein tensor we will obtain [3]:

Ēi j = Ei j + (n − 2)
(
σi j +

1
n

(∆1σ − ∆2σ)gi j

)
. (12)
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And for tensors RαiRαj and RαβR
α β
i j respectively: taking into account (7)

R̄αiR̄αj =e−2σ(RαiRαj + (n − 2)(σαiRαj + σα jRαi )

+2(∆2σ + (n − 2)∆1σ)(Ri j + (n − 2)σi j) + (n − 2)2σαiσ
α
j + (∆2σ + (n − 2)∆1σ)2gi j); (13)

and with respect to equations (6), (7)

R̄αβR̄
α β
i j =e−2σ(RαβR

α β
i j + (n − 2)σαβR

α β
i j − 2(n − 2)σαiσ

α
j

−Rα jσ
α
i − Rαi σα j + Ri j(∆2σ + (n − 2)∆1σ − ∆1σ) + σi j(R + (n − 2)(2∆2σ + (n − 4)∆1σ) (14)

+gi j(Rαβσαβ + (n − 2)σαβσαβ + ∆1σR + (∆2σ + (n − 2)∆1σ)2 + (n − 2)(∆2σ − ∆1σ))).

Taking into account (10), (12), (13) and (14), we obtain

Āi j = Ei j + (n − 2)
(
σi j +

1
n

(∆1σ − ∆2σ)gi j

)
− e−2σ(RαiRαj + (n − 2)(σαiRαj + σα jRαi )

+2(∆2σ + (n − 2)∆1σ)(Ri j + (n − 2)σi j) + (n − 2)2σαiσ
α
j + (∆2σ + (n − 2)∆1σ)2gi j)

+e−2σ(RαβR
α β
i j + (n − 2)σαβR

α β
i j − 2(n − 2)σαiσ

α
j − Rα jσ

α
i − Rαi σα j + Ri j(∆2σ + (n − 2)∆1σ − ∆1σ)

+σi j(R + (n − 2)(2∆2σ + (n − 4)∆1σ) + gi j(Rαβσαβ + (n − 2)σαβσαβ + ∆1σR

+(∆2σ + (n − 2)∆1σ)2 + (n − 2)(∆2σ − ∆1σ)).

Collecting the similar terms we get

Āi j = Ai j − (e−2σ − 1)(RαiRαj − RαβR
α β
i j )

+ e−2σ[(n − 2)σαβR
α β
i j − (n − 1)(σαiRαj + σα jRαi )n(n − 2)σαiσ

α
j (15)

+ (R + (n − 2)(e2σ − n∆1σ))σi j − (∆2σ + (n − 1)∆1σ)Ri j

+ gi j(Rαβσαβ + (n − 2)σαβσαβ + ∆1σR + (∆2σ∆1σ)(n − 2)
(
1 − e2σ

n

)
)].

Thus, the theorem is proved.
The proved theorem has the following corollaries:

Corollary 1. If pseudo-Riemannian space Vn admits a conformal mapping with preservation of tensor Ai j, then
the tensor complies with the condition

(1 − e−2σ)Ai j = e−2σ[(n − 2)σαβR
α β
i j − (n − 1)(σαiRαj + σα jRαi )

− n(n − 2)σαiσ
α
j + (R + (n − 2)(e2σ − n∆1σ))σi j − (∆2σ + (n − 1)∆1σ + e2σ − 1)Ri j (16)

+ gi j

(
Rαβσαβ + (n − 2)σαβσαβ + ∆1σR + (∆2σ − ∆1σ)(n − 2)

(
1 − e2σ

n

)
+ (1 − e2σ)

R
n

)
].

Obviously, if Āi j = Ai j, then (15) taking into account (10) we get (16).

Corollary 2. If pseudo-Riemannian space Vn admits a conformal mapping onto quasi-Einstein space of the first
type, then tensor Ai j meets the condition

Ai j = (n − 1)(σαiRαj + σα jRαi ) − (n − 2)σαβR
α β
i j

+n(n − 2)σαiσ
α
j − (R + (n − 2)(e2σ − n∆1σ))σi j + (∆2σ + (n − 1)∆1σ + e2σ − 1)Ri j (17)

−gi j

(
Rαβσαβ + (n − 2)σαβσαβ + ∆1σ + (∆2σ − ∆1σ)(n − 2)

(
1 − e2σ

n

)
+ (1 − e2σ)

R
n

)
.
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EQUIDISTANT QUASI-EINSTEIN SPACES

A pseudo-Riemannian space Vn having a metric tensor gi j is called an equidistant, if it contains a vector field φi , 0
complying with equations

φi, j = τgi j, (18)

where τ— an invariant. When τ , 0 it is an equidistant space of main variety, while if τ = 0 it is a space of peculiar
variety [11, 14].

Vector field satisfying the conditions (18), was called a concircular by K. Yano.
Integrability conditions for the main equations (18) can be formulated in the following way

φαRαi jk = gi jτ,k − gikτ, j. (19)

We get from the latter:

τ,i =
1

n − 1
φαRαi . (20)

The set of equations (18) and (20) is closed. It is a system of linear differential equations in covariant derivatives of
the first order of Cauchy type with coefficients unequivocally defined by the space Vn, in respect to an unknown vector
φi and invariant τ.

Let us note that equidistant spaces play crucial role in the theory of geodesic mappings. Or in other words they
are extremely important for the theory of modeling with preservation of geodesic lines [3, 7].

The integrability conditions (18) are the basis for an evident conclusion:

τ,k = Bφk, (21)

here B is an invariant.
Then equations (19) and (20) can be re-written as:

φαRαi jk = B(φkgi j − φ jgik), (22)

φαRαi = (n − 1)Bφi. (23)

Multiplying (2) by φi and wrapping by i , taking into account (3), (22), (23), we obtain for quasi-Einstein spaces of
the first type

(n − 1)B − R
n
= B2(n − 1)n − BR. (24)

Thus, one of the following is true: either

B =
R

n(n − 1)
, (25)

or
B =

1
n
. (26)

So the theorem is proved:

Theorem 2. Integrability conditions for equations (18) for quasi-Einstein spaces of the first type are as follows

φαYαi jk = 0 (27)

or
φαZαi jk = 0, (28)

here
Yh

i jk = Rh
i jk −

R
n(n − 1)

(
δhkgi j − δhjgik

)
, (29)

and
Xh

i jk = Rh
i jk −

1
n

(
δhkgi j − δhjgik

)
. (30)
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Tensor Yh
i jk — is called a tensor of concircular curvature. Considering (23) and (30) we will get

Xh
i jk = Yh

i jk −
R − (n − 1)

n(n − 1)

(
δhkgi j − δhjgik

)
. (31)

Taking into account the fact that invariant B is uniquely defined for a given pseudo-Riemannian space, we can divide
the equidistant almost For the type A — (27) is true, while for the type B — (28) is true.

SPECIAL CONFORMAL MAPPINGS OF QUASI-EINSTEIN SPACES

Let us treat a tensor of the following shape

Zh
i jk = Rh

i jk − B
(
δhkgi j − δhjgik

)
, (32)

then
Zαi jα = Zi j = Ri j − B(n − 1)gi j. (33)

The same tensor exists for any V̄n
Z̄i j = R̄i j − B̄(n − 1)ḡi j. (34)

Subtracting the equation (34) from (33), we get

(R̄i j − Ri j) − (n − 1)(B̄ḡi j − Bgi j) = Z̄i j − Zi j.

Considering (4) and (7), we obtain

σi j − ρgi j =
1

n − 2
(Z̄i j − Zi j), (35)

where
ρ =

1
n − 2

(
(n − 1)(B̄e2σ − B) − (∆2σ + (n − 2)∆1σ)

)
.

Thus, the following theorem is true:

Theorem 3. If Vn and V̄n are a pair of two conformly-correspondent pseudo-Riemannian spaces, then their ten-
sors Zi j and Z̄i j meet the conditions (35).

A conformal mapping of a pseudo-Riemannian space Vn onto V̄n, when

Zi j = Z̄i j, (36)

is called a conformal mapping which preserves a tensor Zi j.
Selecting a special type of tensor Zi j, one can obtain different pseudo-Riemannian spaces, that are characterized

by some pre-selected features [6, 10].
Considering (36) we transform the equations (35) in the following way:

σi j = ρgi j (37)

or
σi j =

∆2σ − ∆1σ

n
gi j. (38)

A special type of conformal mappings is defined according to their ability to preserve geodesic circles.

Definition 1. A curve in pseudo-Riemannian space Vn is called a geodesic circle, if the first curvature of the curve
is constant and the second curvature identically equals to zero.

Definition 2. A conformal mapping of pseudo-Riemannian space Vn, that preserves the geodesic circles, namely
every geodesic circle of the space Vn maps into a geodesic circle of the conformal space V̄n, is called a concircular.
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A conformal mapping is concircular, if and only if the function σ complies with equations (4), (9), conditions
(38).

Taking the latter into consideration we formulate the following

Theorem 4. If a conformal mapping of pseudo-Riemannian spaces Vn preserves tensor Zi j, then it preserves the
geodesic circles too.

On the other hand, considering (37) and (38), it is clear that if Vn admits concircular mappings and meets the condition

2∆2 + (n − 2)∆1

n
= B̄e2σ − B, (39)

then this mapping preserves also the tensor Zi j.

EQUATIONS IN LINEAR FORM

In order to study conformal mapping of pre-selected pseudo-Riemannian spaces, the linear form of equations is
applied. The latter permits more effective enquiry. Let us transform the obtained results into the linear form.

Let us consider invariant S that satisfies the equation:

σ = − ln |S |. (40)

Then (4) can be re-written as
ḡi j(x) = S −2gi j.

Subsequently differentiating (40), we obtain

σ, i = −
1
S

S , i σ, i j = −(S · S , i j − S , iS , j) · S −2 σi j = −S , i j · S −1

and
∆1σ = ∆1S · S −2; ∆2σ = (∆1S − S∆2S ) · S −2.

Taking it into account, equations (38) can be transformed in the following way

S ,i j =
∆2S

n
gi j, (41)

and (39) —
S∆2S =

n
2
∆1S . (42)

Vector S , i is called a concircular, if it satisfies the conditions (41) and a space is called an equidistant if it admits such
a field.

Thus, we proved

Theorem 5. If pseudo-Riemannian space Vn admits a conformal mapping preserving a tensor Zi j, then Vn is an
equidistant space.

If ∆2S , 0, then the equidistant space belongs to the main type. If ∆2S ≡ 0 then the equidistant space belongs to
the special type. If vector S , i is isotropic, namely ∆1S = 0, then the equidistant space belongs to special type with
a necessity. Equidistant spaces of the main type contain a special coordinate system where a metric tensor of an
equidistant space can be written as follows

ds2
n = dx12 + f (x1)ds2

n−1(x2, ..., xn). (43)

Here f (x1) , 0 is a function, and ds2
n−1 is a metric of (n − 1) – dimensional pseudo-Riemannian space.

Taking Theorem 5. into account, we formulate

Theorem 6. If a pseudo-Riemannian space Vn(n > 2) admits a conformal mapping preserving a tensor Zi j and
∆2S , 0, then there exists a system of coordinates where its metric tensor is defined by the equation (43).
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Considering (21), (33) and (42) we obtain the following expression for a concircular mapping of a quasi-Einstein
space of the first type

1
n

(∆2S ),i = BS ,i, (44)

where B =
R

n(n − 1)
— for type A, or B =

1
n

— for type B.

Considering the substitution by (40), formulae (15), (16), (17) can be re-written as follows

Āi j = Ai j − (S 2 − 1)(RαiRαj − RαβR
α β
i j ) − S

(
(n − 2)S ,αβR

α β
i j − (n − 1)(S ,αiRαj + S ,α jRαi )

)
− n(n − 2)S ,αiS αj − S (R + (n − 2)(S −2 − n∆1S −2))S ,i j − (n∆1S − S∆2S )Ri j (45)

+ gi j

(
−S RαβS αβ, + (n − 2)S ,αβS αβ, + R∆1S − (n − 2)S∆2S

(
1 − 1

nS 2

))
;

Ai j =
S

1 − S 2

(
−S ,αβR

α β
i j + (n − 1)(S ,αiRαj + S ,α jRαi ) − (R + (n − 2)

S 2

1 − n∆1S
)
)

S ,i j

− n(n − 2)
1 − S 2 S ,αiS αj −

1
1 − S 2 (n∆1S − S∆2S + 1 − S 2)Ri j (46)

+
1

1 − S 2 gi j

(
−S S αβ, Rαβ + (n − 2)S ,αβS αβ, + R∆1S +

(S 2 − 1)R
n

− ∆2S
S

(n − 2)
n

(nS 2 − 1)
)

;

Ai j = (n − 2)
1
S

S ,αβR
α β
i j − (n − 1)

1
S

(S ,αiRαj + S ,α jRαi ) + n(n − 2)
1

S 2 S ,αiS αj

+ (R + (n − 2)(S −2 − S −2∆1S ))S ,i j
1
S
− 1

S 2 (n∆1S − S∆2S − S 2 + 1)Ri j (47)

+
1

S 2 gi j

(
−S S αβ, Rαβ + (n − 2)S ,αβS αβ, + R∆1S +

(S 2 − 1)
n

R − ∆2S
S

(n − 2)
n

(nS 2 − 1)
)
.

Here S i
j = gαiS ,α j; S i j

, = gαigβ jS ,αβ. Thus, in the case of conformal mapping of pseudo-Riemannian space Vn onto
the pseudo-Riemannian space V̄n, tensors Ai j andĀi j are connected by conditions (45), where S — can be defined
via the expression (42). In order to make the pseudo-Riemannian space Vn permitting the conformal mappings with
preservation of tensor Ai j, the latter should conform to limitations (46). On the other hand, when pseudo-Riemannian
space Vn permits conformal mappings on the quasi-Einstein space of the first type, then tensor Ai j conforms to the
condition (47).

CONCIRCULAR MAPPINGS OF QUASI-EINSTEIN SPACES OF THE FIRST TYPE

Let us turn our attention to quasi-Einstein spaces of the first type permitting concircular mappings. The latter spaces
are equidistant and thus, consist of two classes: A and B.

Einstein tensor and tensor of concircular curvature are invariant in the course of concircular mappings.
Let us formulate the theorem for tensor Ai j:

Theorem 7. When pseudo-Riemannian space Vn permits concircular mapping onto the pseudo-Riemannian space
V̄n, then their tensors Ai j and Āi j satisfy conditions

Āi j − Ai j = −(S 2 − 1)(RαiRαj − RαβR
α β
i j ) + (2S∆2S − n∆1S )Ei j + τgi j. (48)

Here τ— an invariant.
In order to verify the theorem, let us substitute (41) into (45). Having been transformed the resulting expression

will take a look of (47), where

τ = −∆2S
nS

(
(n2 − 2)(S 2 − 1) − 2(n − 1)

)
.
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When Āi j = 0 , or otherwise V̄n quasi-Einstein space of the first type, then for Vn the following is true

(1 − S 2 + 2S∆2S − n∆1S )Ei j + τgi j = 0. (49)

Wrapping, we will see that τ = 0, or in other words

∆2S = 0.

Then either 1 − S 2 − n∆1S = 0, or Ei j = 0.
Let us treat the case, when

S ,αS α =
1 − S 2

n
, (50)

then
(∆1S ),i = −

2S
n

S ,i = 0.

It is impossible, then

Corollary 3. When pseudo-Riemannian space Vn permits concircular mapping onto the quasi-Einstein space of
the first type, then this space is an Einstein space.

And considering the invariance of Einstein tensor with respect to concircular mappings we get

Corollary 4. There is no quasi-Einstein space of the first type that differs from Einstein spaces permitting concir-
cular mappings.

Let us note that Einstein spaces permitting the covariant constant vector are Ricci flat.

CONCLUSION

The constant search for a better model leads to the need of investigation of quasi-Einstein spaces of the first type.
Conformal mappings, namely mappings preserving angles, are extremely important in the theory of modeling of
pseudo-Riemannian spaces. The obtained results are the premise for further investigations on other types of mappings
of quasi-Einstein spaces, in particular geodesic mappings.
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