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Abstract
In idempotent mathematics, the idempotent measures (Maslov measures) are coun-
terparts of the probability measures. We provide a fuzzy metrization of the set of
idempotent measures on fuzzy metric spaces. We prove that this fuzzy metrization
determines a monad in the category of fuzzy metric spaces and non-expanding maps.
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1 Introduction

Fuzzy metric spaces are generalizations of probabilistic metric spaces defined by
Menger [9]. They find numerous applications, e.g. to color image filtering [4,10].
Some results concerning fixed points of maps of these spaces can be applied to Baire
spaces in the domains of words [13,14].

There are two main approaches to the definition of fuzzy metric spaces. We use the
one introduced by George and Veeramaani [6]. The class of fuzzy metrizable spaces
in the sense of George and Veeramaani coincides with that of metrizable spaces. This
naturally suggests that various constructions of topology of metric spaces have their
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counterparts in the realm of fuzzy metric spaces. One of them is a fuzzy counterpart
of the ultrametric, namely, the so-called fuzzy ultrametric. The fuzzy ultrametrization
of spaces of probability measures with compact supports on fuzzy ultrametric spaces
is constructed in [17].

Thepresent note is devoted to such a fuzzymetrization.Weuse an approachbasedon
the notion of density of an idempotent measure [1]. Note that idempotent measures are
analogs of probability measures in idempotent mathematics, a part of mathematics in
which at least one of the arithmetic operations on the reals is replaced by an idempotent
operation (e.g. maximum). In [8], a fuzzy ultrametrization of the set of idempotent
measures (Maslov measures) with compact support on fuzzy ultrametric spaces is
constructed and this leads to a natural question of fuzzy metrization of the set of
idempotent measures with compact support on a fuzzy metric space.

The main result of this paper states that there exists a fuzzy natural metric on the set
of idempotent measures on a compact fuzzymetric space. Our construction is based on
the fuzzyHausdorff metrization of the hyperspaces of fuzzymetric spaces investigated
in [12]. In some sense, the obtainedmetrization is closer to the Prokhorovmetric rather
than to the Kantorovich one on the spaces of probability measures.Moreover, we show
that the functor of idempotent measure determines a monad in the category of fuzzy
metric spaces and non-expanding maps.

2 Preliminaries

2.1 Idempotent measures

We recall necessary information on the spaces of idempotent measures; see, e.g. [19]
for more details. Let X be a compact Hausdorff space. As usual, by C(X) we denote
the space of continuous functions on X endowed with the sup-norm. For any c ∈ R,
we denote by cX the constant function on X taking the value c.

Let Rmax = R ∪ {−∞}. We consider the natural order on Rmax. We also use the
following traditional notation in idempotent mathematics: ⊕ for max and � for +
(this may concern either numbers or functions). The following convention is used:
−∞� x = x�−∞ = −∞.

A functionalμ : C(X) → R is said to be an idempotent measure (Maslov measure)
if it satisfies the following conditions:

• μ(cX ) = c;
• μ(ϕ⊕ψ) = μ(ϕ)⊕μ(ψ);
• μ(λ�ϕ) = λ�μ(ϕ).

The Dirac measure δx concentrated at x ∈ X (i.e. δx (ϕ) = ϕ(x), ϕ ∈ C(X)) is an
example of idempotent measure. A more complicated example is μ = ⊕n

i=1 λi �δxi ,
where x1, . . . , xn ∈ X and λ1, . . . , λn ∈ [−∞, 0] are such that

⊕n
i=1 λi = 0. Here

μ(ϕ) = ⊕n
i=1 λi �ϕ(xi ).

We denote by I (X) the set of all idempotent measures on X . The set I (X) is
endowed with the weak* topology. A base of this topology consists of sets of the form
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O〈μ0;ϕ1, . . . , ϕk; ε〉 = {
μ ∈ I (X) | |μ(ϕi ) − μ0(ϕi )| < ε, i = 1, . . . , n

}
,

whereμ0 ∈ I (X), ϕ1, . . . , ϕk ∈ C(X), ε > 0. The space I (X) is a compact Hausdorff
space if so is X (see [19]). If, in addition X is metrizable, then so is I (X). The map
η = ηX : X → I (X), η(x) = δx , is an embedding.

Let f : X → Y be a continuous map of compact Hausdorff spaces. The map
I ( f ) : I (X) → I (Y ) is defined by the formula: I ( f )(μ)(ϕ) = μ(ϕ f ), μ ∈ I (X),
ϕ ∈ C(Y ). This map is continuous [19]. The construction I determines a functor in
the category Comp of compact Hausdorff spaces and continuous maps.

2.2 Fuzzymetric spaces

We provide necessary information on the fuzzy metric spaces in the sense of George
and Veeramani; see, e.g. [6,7] for more details.

Definition 2.1 A binary operation ∗: [0, 1]×[0, 1] → [0, 1] is called a continuous
t-norm if it satisfies the following conditions:

(i) ∗ is associative and commutative,
(ii) ∗ is continuous,
(iii) a ∗1 = a for all a ∈ [0, 1],
(iv) a ∗b � c∗d whenever a � c and b � d, for each a, b, c, d ∈ [0, 1].
The following are examples of continuous t-norms: 1) a ∗b = ab, 2) a ∗b =
min {a, b}, 3) a ∗b = max {a + b − 1, 0} (Łukasiewicz t-norm).

Definition 2.2 A3-tuple (X , M, ∗) is said to be a fuzzy metric space if X is an arbitrary
set, ∗ is a continuous t-norm and M is a fuzzy set on X × X × (0,∞) satisfying the
following conditions for all x, y, z ∈ X and s, t ∈ (0,∞):

(i) M(x, y, t) > 0;
(ii) M(x, y, t) = 1 if and only if x = y;
(iii) M(x, y, t) = M(y, x, t);
(iv) M(x, y, t)∗M(y, z, s) � M(x, z, t + s);
(v) the function M(x, y, ·) : (0,∞) → [0, 1] is continuous.

If (X , M, ∗) is a fuzzy metric space, (M, ∗) is called a fuzzy metric on X .

Let X be a topological space. By exp X we denote the family of all nonempty compact
subsets in X . The set exp X is endowed with the Vietoris topology; its base comprises
of sets of the form

〈U1, . . . ,Un〉 =
{

A ∈ exp X | A ⊂
n⋃

i=1

Ui , A ∩Ui = ∅, i = 1, . . . , n

}

,

where U1, . . . ,Un , n ∈ N, are open sets in X . Let f : X → Y be a continuous
map of topological spaces. The map exp f : exp X → exp Y defined by the formula
exp f (A) = f (A), A ∈ exp X , is continuous. The construction exp determines a
functor in the category Comp.
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Let (X , M, ∗) be a fuzzy metric space. Given a ∈ X , b ∈ exp X , and t ∈ (0,∞),
define M(a, B, t) = sup{M(a, b, t) | b ∈ B}. For every A, B ∈ exp X and t > 0,
define HM : exp X × exp X ×(0,∞) → [0, 1] by

HM (A, B, t) = min
{
inf
a∈A

M(a, B, t), inf
b∈B M(A, b, t)

}
.

Then (exp X , HM , ∗) is a fuzzy metric space. The function (HM , ∗) is called the
Hausdorff fuzzy metric on the set exp X . The Hausdorff fuzzy metric generates the
Vietoris topology on exp X . Let (Xi , Mi , ∗), i = 1, 2, be fuzzy metric spaces.

Definition 2.3 A map f : X1 → X2 is called an isometric embedding if, for every
(x, y, t) ∈ X × X ×(0,∞), M2( f (x), f (y), t) = M1(x, y, t).

Definition 2.4 A map f : X1 → X2 is called non-expanding if, for every (x, y, t) ∈
X × X ×(0,∞), M2( f (x), f (y), t) � M1(x, y, t).

The fuzzy metric spaces and their non-expanding maps form a category. The function

M : (X1×X2)×(X1×X2)×(0,∞) → [0, 1],

defined by the formula M((x1, x2), (y1, y2), t) = M1(x1, y1, t)∗M2(x2, y2, t), is a
fuzzy metric on X1×X2 (see, e.g. [11]). This metric generates the product topology
on X1×X2.

3 Fuzzymetrics on the set of idempotent measures

Let X be a compactmetrizable space.Let I (X)denote the set of A ∈ exp (X×[−∞, 0])
satisfying the following conditions:

• (x,−∞) ∈ A for every x ∈ X ;
• there exists x ∈ X such that (x, 0) ∈ A;
• (x, t) ∈ A implies (x, s) ∈ A, for every s ∈ [−∞, t].

Proposition 3.1 The set I (X) is closed in exp(X×[−∞, 0]).
Proof We see that I (X) = K1 ∩ K2 ∩ K3, where

K1 = {
A ∈ exp (X×[−∞, 0]) | A ⊃ X ×{−∞}},

K2 = {
A ∈ exp (X×[−∞, 0]) | A ∩ (X ×{0}) = ∅

}
,

K3 = {
A ∈ exp (X×[−∞, 0]) | (x, t) ∈ A implies {x}×[−∞, t] ⊂ A

}
.

From the definition of the Vietoris topology it easily follows that the sets K1
and K2 are closed in exp (X×[−∞, 0]), therefore it suffices to prove that the set
exp (X×[−∞, 0])\K3 is open in exp (X×[−∞, 0]).

Let A ∈ exp (X×[−∞, 0])\K3, then there exist x ∈ X and t, t ′ ∈ [−∞, 0] such
that (x, t) ∈ A, (x, t ′) /∈ A and −∞ � t ′ < t . Since A is closed in X×[−∞, 0],
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Fuzzy metrization of the spaces of idempotent measures

there exist neighborhoods U of x and V ,W of t ′ and t in [−∞, 0] respectively such
that (U ×V ) ∩ A = ∅, W ∩ V = ∅, and V ⊂ [0, t).

Then

A ∈ 〈X ×[0,∞], (X×[0,∞])\(U ×V ),U ×W 〉 ⊂ exp(X×[−∞, 0])\K3

and we are done. ��
For any continuous map f : X → Y , let

I ( f ) = exp ( f ×1[−∞,0])| I (X) : I (X) → I (Y ).

It is easy to verify that I is a functor in the category Comp. Given A ∈ I (X), define
h(A) : C(X) → R as follows:

h(A)(ϕ) =
⊕

{ t�ϕ(x) | (x, t) ∈ A}.

Proposition 3.2 For every A ∈ I (X), h(A) ∈ I (X).

Proof Clearly, h(A)(cX ) = c. Given ϕ,ψ ∈ C(X), we obtain

h(A)(ϕ⊕ψ) =
⊕ {

t�(ϕ⊕ψ)(x) | (x, t) ∈ A
}

=
⊕ {

((t�ϕ)⊕(t�ψ))(x) | (x, t) ∈ A
}

=
⊕ {

(t�ϕ)(x)⊕ (t�ψ)(x) | (x, t) ∈ A
}

=
⊕ {

(t�ϕ)(x) | (x, t) ∈ A
}⊕

⊕ {
(t�ψ)(x) | (x, t) ∈ A

}

= h(A)(ϕ)⊕h(A)(ψ).

For any λ ∈ R, we have

h(A)(λ�ϕ) =
⊕

{ t�(λ�ϕ)(x) | (x, t) ∈ A}
= λ�

⊕
{ t�ϕ(x) | (x, t) ∈ A} = λ�h(A)(ϕ). ��

Proposition 3.3 The map h : I (X) → I (X) is continuous.

Proof Let (Ai ) be a sequence in I (X) converging to A ∈ I (X). We are going to show
that lim i→∞ h(Ai ) = h(A).

Let ϕ ∈ C(X). We are going to demonstrate that lim i→∞ h(Ai )(ϕ) = h(A)(ϕ).
Given ε > 0, find a finite open cover U of the space X such that the oscillation of ϕ

on every element of U is less than ε/2. Let c < 0 be such that c < inf {ϕ(x) | x ∈ X}.
Consider a finite cover V of [c, 0] such that the diameter of every element V is less
than ε/2.
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Consider the family U×V = {U×V |U ∈ U, V ∈ V}. There is i0 ∈ N such that,
for all i � i0, the sets Ai and A are (U×V)-close. The latter means that

A ∩U ×V = ∅ ⇐⇒ Ai ∩U ×V = ∅,

for all U ∈ U, V ∈ V.
There exists (x, t) ∈ A such that h(A)(ϕ) = t�ϕ(x). Then necessarily (x, t) ∈⋃
(U×V), i.e. there exists U ×V ∈ U×V such that (x, t) ∈ U×V . Since Ai and A

are (U×V)-close, there is (x ′, y′) ∈ Ai ∩ (U×V ). We see that

h(Ai )(ϕ) = t ′�ϕ′(x) � h(A)(ϕ) = t�ϕ(x).

Weconclude that lim i→∞ h(Ai )(ϕ) = h(A)(ϕ). Sinceϕ is arbitrary, lim i→∞ h(Ai ) =
h(A)(ϕ), by the definition of the weak* topology. Thus, the map h is continuous. ��
Proposition 3.4 The map h : I (X) → I (X) is onto.

Proof Let μ = ⊕n
i=1 λi �δxi ∈ I (X). Consider

A = (X ×{−∞}) ∪
n⋃

i=1

({xi }×[−∞, λi ]).

Clearly, A ∈ I (X) and h(A) = μ. Since the set of idempotent measures with finite
support is dense in I (X) (see [19]), we conclude that h is an onto map. ��
Proposition 3.5 The map h : I (X) → I (X) is an embedding.

Proof Suppose A, B ∈ I (X), A = B. Without loss of generality, one may assume
that A\ B = ∅. Let (x, t) ∈ A\ B. One may also suppose that (x, t ′) /∈ A for all
t ′ > t .

There exist a neighborhood U of x in X and r < t such that U ×(r , 0] ∩ B = ∅.
Let ϕ ∈ C(X) be a function satisfying the following properties:

• ϕ � 0,
• ϕ(x) = 0,
• ϕ(y) � r , for every y ∈ X \U .

Then, clearly, h(A)(ϕ) � ϕ(x) + t = t and h(B)(ϕ) � r = t = h(A)(ϕ). Therefore
h(A) = h(B). ��

Finally, we obtain that the map h = hX : I (X) → I (X) is a homeomorphism.
Note also that (hX ) : I → I is an isomorphism of functors I and I considered as
endofunctors in the category of compact metrizable spaces and continuous maps.

Remark 3.6 The map hX : I (X) → I (X) can be defined for any compact Hausdorff
spaces X , not only for metrizable. Using slightly more complicated arguments one
can demonstrate that hX is an isomorphism of I and I in Comp.
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Let ∗ be the product t-norm. We endow the segment [−∞, 0] with the fuzzy metric
N defined by the formula

N (x, y, t) = t

t + |ex − ey |

(naturally, e−∞ = 0). Then, given a compact fuzzy metric space (X , M, ∗), the space
X×[−∞, 0] is endowed with the fuzzy product metric and, consequently, the space
I (X) is endowed with the fuzzy Hausdorff metric generated by this product metric.
This allows us to endow the set I (X)with the fuzzymetric induced from thementioned
metric by the map h.

Denote by F the functor of multiplication by [−∞, 0]. For every X , let

mX : F2(X) = X×[−∞, 0]×[−∞, 0] → F(X) = X×[−∞, 0]

denote the map acting by the formula mX (x, t, s) = (x, t�s).

Lemma 3.7 The map mX is non-expanding.

Proof Denote the fuzzy metrics on X , F2(X), and F(X) by M, L , and L ′ respec-
tively. Let (x, t, s), (x ′, t ′, s′) ∈ F(X). Then mX (x, t, s) = (x, t�s), mX (x ′, t ′, s′) =
(x ′, t ′�s′). Given r > 0, we obtain

L((x, t, s), (x ′, t ′, s′), r)
= M(x, x ′, r)N (t, t ′, r)N (s, s′, r)

= M(x, x ′, r) · r

r + |et − et ′ | · r

r + |es − es′ |
= M(x, x ′, r) · r2

r2 + r(|et − et ′ | + |es − es′ |) + |et − et ′ ||es − es′ |
� M(x, x ′, r) · r2

r2 + r(|et − et ′ | + |es − es′ |)
� M(x, x ′, r) · r

r + |et�s − et ′�s′ |
= L ′(mX (x, t, s),mX (x ′, t ′, s′)). ��

For any x ∈ X , denote by η(x) ∈ I (X) the only point such that hηX (x) = ηX (x) =
δx ∈ I (X).

Proposition 3.8 The map ηX : X → I (X) is non-expanding.

Proof Let xi ∈ X , i = 1, 2. Then

ηX (xi ) = (X×{−∞}) ∪ ({xi }×[−∞, 0]), i = 1, 2.
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Note that, for any x ∈ X , M((x,−∞), ηX (x2), r) = 1. Suppose that t ∈ [−∞, 0].
Then, for any x ∈ X , we obtain

M((x1, t), (x,−∞), r) = M(x1, x, r)N (t,−∞, r).

For every s ∈ [−∞, 0],

M((x1, t), (x2, s), r) = M(x1, x2, r)M(t, s, r) � M(x1, x2, r).

We conclude that, for any (x, t) ∈ ηX (x1),

M((x, t), ηX (x2), r) = min{1,max {M(x1, x2, r), N (t,−∞, r)}}
= max {M(x1, x2, r), N (t,−∞, r)} � M(x1, x2, r).

Similarly, for any (x, t) ∈ ηX (x2), M((x, t), ηX (x1), r) � M(x1, x2, r). Summing
up, we obtain MH (ηX (x1), ηX (x2), r) � M(x1, x2, r). ��
The following example shows that the map ηX , in general, is not an isometric embed-
ding. Let X = {a, b} be a metric space with d(a, b) = 2. This metric determines the
standard fuzzy metric Md on X by the formula Md(a, b, t) = t/(t + d(a, b)) =
t/(t + 2). Denote by L the product fuzzy metric on X×[−∞, 0] and by LH

the fuzzy metric on I (X) induced by the Hausdorff metric on exp (X×[−∞, 0]).
Then one can easily calculate that LH (ηX (a), ηX (b), t) � t/(t + 1) and therefore
LH (ηX (a), ηX (b), t) = Md(a, b, t).

Define a map λX : F(exp X) → exp F(X) as λX (A, t) = {(a, t) | a ∈ A}.
Lemma 3.9 The map λX is non-expanding.

Proof Let (A, t), (B, s) ∈ F(exp X), r > 0. Then

L((A, t), (B, s), r) = MH (A, B, r)N (t, s, r).

Suppose that MH (A, B, r) � K , for some K � 0. Then L((A, t), (B, s), r) �
K N (t, s, r). Let (a, t) ∈ λX (A, t). By the definition of the fuzzy Hausdorff metric,
there exists b ∈ B such that M(a, b, r) � K and therefore M((a, t), (b, s), r) �
K N (t, s, r). Similarly, for every (b, s) ∈ λX (B, s), there exists a ∈ A such that
M((a, t), (b, s), r) � K N (t, s, r). We conclude that MH (λX (A, t), λX (B, s)) �
K N (t, s, r). ��
Proposition 3.10 Let f : X → Y be a non-expanding map of compact fuzzy metric
spaces. Then the map I ( f ) : I (X) → I (Y ) is also non-expanding.

Proof Due to functorial isomorphism of the functors I and I , one can consider the
map I ( f ) = exp ( f ×1[−∞,0])| I (X). One can easily verify that the map f ×1[−∞,0]
is non-expanding. The statement of the proposition is then an immediate consequence
of the fact that the hyperspace functor preserves the class of non-expanding maps (see
[16]). ��
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Given a t-norm ∗, denote by FMS(∗) the category whose elements are compact fuzzy
metric spaces and whose morphisms are non-expanding maps of these spaces. Let
U : FMS(∗) → Comp denote the forgetful functor. The above results can be inter-
preted as follows: the functor I in the category Comp admits a lifting to the category
FMS(∗). Also, the maps λX form a natural transformation λ in the category Comp.

A monad on a category C is a triple T = (T , η, θ), where T : C → C is an
endofunctor, η : 1C → T and θ : T 2 → T are natural transformations satisfying the
conditions θηT = θTη = 1T and θT θ = θθT (see, e.g. [2] for details).

The hyperspace functor in the category Comp determines a monad structure. The
obtained monad (the hyperspace monad; see [18] for its uniqueness) is denoted by
H = (exp, s, u). The natural transformation s : 1Comp → exp is defined as sX (x) =
{x}, and the natural transformation u : exp2 → exp is defined as uX (A) = ⋃

A. Note
that the same natural transformations allow us to define the hyperspace monad on the
category FMS(∗).

There exists a monad structure on the functor I acting in the category Comp (see
[19]). Indeed, define the natural transformation η : 1 → I as follows: ηX (x) = δx ,
x ∈ X . Given a function ϕ ∈ C(X), let ϕ : I (X) → R be defined by the formula
ϕ(μ) = μ(ϕ). Then ϕ ∈ C(X) and we define θX : I 2(X) → I (X) by the formula
θX (M)(ϕ) = M(ϕ), for every M ∈ I 2(X) and ϕ ∈ C(X).

Define θ X : I 2(X) → I (X) by the formula

θ X (A) = {
(a, ts) | there is (A, t) ∈ A and there is (a, s) ∈ A

}
.

We are going to show that the diagram

I 2(X)
I (hX )hI (X)

θ X

I 2(X)

θX

I (X)
hX

I (X)

(1)

is commutative. Let A ∈ I 2(X). Then

hX θ X (A)(ϕ) =
⊕ {

t�s�ϕ(a) | there exist (A, t) ∈ A and (a, s) ∈ A
}
,

where ϕ ∈ C(X). On the other hand,

θX I (hX )hI (X)(A)(ϕ) = I (hX )hI (X)(A)(ϕ) = hI (X)(A)(ϕhX )

=
⊕ {

t�ϕhX (A) | (A, t) ∈ A
}

=
⊕ {

t�hX (A)(ϕ) | (A, t) ∈ A
}

=
⊕ {

t�
⊕

{s�ϕ(a) | (a, s) ∈ A} | (A, t) ∈ A
}

= hX θ X (A)(ϕ).
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Our next result shows that, for the defined above metrization of the sets of idempotent
measures, the natural transformations from this monads comprise of non-expanding
maps. To this end, having in mind diagram (1), it is enough to prove that the map θ X

is non-expanding.

Proposition 3.11 For any X,

θ X = exp(1X ×m)uX×[0,1]×[0,1] exp λX×[0,1].

Proof Let (a, t) ∈ θ(A), whereA ∈ I 2(X). Then there are (A, t) ∈ A and (a, s) ∈ A
such that r = t�s. Since

λX×[0,1](A, t) = {((a, s′), t) | (a, s′) ∈ A},

we conclude that ((a, s), t) ∈ uX×[0,1]×[0,1] exp λX×[0,1] and therefore

(a, r) = (a, s� t) ∈ exp (1X ×m)uX×[0,1]×[0,1] exp λX×[0,1].

Thus,

θ X ⊂ exp(1X ×m)uX×[0,1]×[0,1] exp λX×[0,1].

The reverse inclusion is easy to check as well. ��
Corollary 3.12 The map θ X is non-expanding.

Proof This is a consequence of Proposition 3.11 and the following facts:

• The maps λX×[0,1] and mX are non-expanding (see Lemmas 3.9 and 3.7).
• The map uX×[0,1]×[0,1] is non-expanding.
• The functor exp preserves the class of non-expanding maps (see [16]). ��

Finally, we obtain the following result.

Theorem 3.13 The triple (I , η, θ) is a monad in the category FMS( ·).

4 Remarks and open questions

For the t-normmin, one can use the following fuzzymetricM on the segment [−∞, 0]:

M(x, y, t) = e−|ex−ey |/t

(see [6]).
If ∗ is the Łukasiewicz t-norm, then one can use the following fuzzy metric on the

segment [−∞, 0]:

M(x, y, t) = 1 − (
(2 + emin{x,y})−1 − (2 + emax{x,y})−1)
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(this is a modification of one example from [15]). The question for an arbitrary t-norm
∗ remains open.

Let R = Rmax ∪ {∞} = R ∪ {−∞,∞}. In the sequel, ⊗ is used for min. A
functional μ : C(X) → R is called amax-min measure if the following conditions are
satisfied:

• μ(cx ) = c;
• μ(ϕ⊕ψ) = μ(ϕ)⊕μ(ψ);
• μ(c⊗ϕ) = c⊗μ(ϕ)

(see, e.g. [3] for details). By J (X) we denote the set of all max-min measures on a
compact Hausdorff space X . The set J (X) is endowed with the weak*-topology.

Using arguments similar to the above, one can construct a fuzzy metric of the
spaces J (X) for a fuzzy metric space X . An ultrametrization of the spaces J (X) for
ultrametric X is given in [5]. It looks plausible that the methods of [8] can be applied
also to the spaces of max-min measures to obtain their fuzzy ultrametrization.

Remark 4.1 One can also construct a fuzzy metric on the set of idempotent measures
with compact support on noncompact fuzzy metric spaces.
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