On the typology of quasi-Einstein spaces

Cite as: AIP Conference Proceedings **2302**, 040003 (2020); https://doi.org/10.1063/5.0033700 Published Online: 03 December 2020

V. Kiosak, A. Savchenko, and S. Khniunin

View Online

w Online Expo

Your Qubits. Measured.

Meet the next generation of quantum analyzers

- Readout for up to 64 qubits
- Operation at up to 8.5 GHz, mixer-calibration-free
- Signal optimization with minimal latency

On the Typology of Quasi-Einstein Spaces

V. Kiosak^{1,a)}, A. Savchenko^{2,b)} and S. Khniunin^{3,c)}

¹Institute of Engineering Odesa State Academy of Civil Engineering and Architecture, 4 Didrihson str, 65029 Odessa, Ukraine

²Kherson State University, 27 University str., 73003 Kherson, Ukraine ³Odessa National University Maritime Academy, 8 Didrihson str., 65029 Odessa, Ukraine

a)Corresponding author: kiosakv@ukr.net
b)savchenko.a20g@ukr.net
c)khniunins2@ukr.net

Abstract. The paper treats a particular type of pseudo-Riemannian spaces, namely quasi-Einstein spaces with gradient defining vector. These spaces are a generalization of well-known Einstein spaces. There are three types of these spaces that permit locally geodesic mappings. We studied some geometric properties of every type.

INTRODUCTION

Let us study a pseudo-Riemannian space $V_n(n > 2)$, with a metric tensor g_{ij} . Here we construct an Einstein tensor in this space. The tensor is defined by a known expression:

$$E_{ij} \stackrel{def}{=} R_{ij} - \frac{R}{n} g_{ij},$$

where R_{ij} – Ricci tensor $R_{ij} \stackrel{def}{=} R_{ij\alpha}^{\alpha}$, R is a scalar curvature $R_{\alpha\beta}g^{\alpha\beta} = R$, R_{ijk}^h – Riemannian tensor. A defect of Einstein tensor [13] is a tensor D_{ij} , defined by an equation

$$E_{ii} - D_{ii} = 0.$$

When selecting a special type of tensor D_{ij} , one can select a particular type of special pseudo-Riemannian spaces. For example, if D_{ij} is a linear combination of metric tensor and covariant derivative of a certain vector, then taking into account coefficients of this combination, one can obtain $\varphi(Ric)$ spaces or Ricci solitons [4, 7]. When D_{ij} is represented by a simple bivector, called defining, then the space is quasi-Einstein [6]. Mapping is a main way for modeling of the above-mentioned spaces. We conducted a research aimed at conformal and geodesic mappings of pseudo-Riemannian spaces with various types of deformation tensor of Einstein tensor [2, 9, 10]. This work treats geodesic mappings of quasi-Einstein spaces with gradient defining vector. These spaces are subdivided into three types: main, particular and special. The obtained results were applied for a research on some geometric properties of spaces of every type.

BASIC EQUATIONS OF GEODESIC MAPPINGS THEORY

Bijection of points of pseudo-Riemannian spaces V_n with a metric tensor g_{ij} and \bar{V}_n with a metric tensor \bar{g}_{ij} is a geodesic mapping when every geodesic line V_n is transformed into a geodesic line \bar{V}_n . Pseudo-Riemannian spaces V_n and \bar{V}_n that permit a geodesic mapping between them are called spaces in geodesic correspondence or belonging to a single geodesic class. In order to define pseudo-Riemannian spaces V_n and \bar{V}_n as permitting bijective geodesic mappings there is a necessary and sufficient condition [17]

$$\bar{\Gamma}_{ij}^h = \Gamma_{ij}^h + \varphi_i \delta_j^h + \varphi_j \delta_i^h, \tag{1}$$

or otherwise, taking into account a covariant constancy of a metric tensor,

$$\bar{g}_{ij,k} = 2\varphi_k \bar{g}_{ij} + \varphi_i \bar{g}_{ik} + \varphi_i \bar{g}_{ik}, \tag{2}$$

here φ_i is a certain (necessarily gradient) vector; $\Gamma_{ij}^h, \bar{\Gamma}_{ij}^h$ – Christoffel symbols V_n and \bar{V}_n respectively; δ_i^h – Kronecker symbols; comma "," is a sign of covariant derivatives in respect to connectivity V_n [1].

Eqs. (1) and (2) are equivalent, they are necessary and sufficient conditions for bijective geodesic correspondence of pseudo-Riemannian spaces V_n and \bar{V}_n . The equations represent a necessary condition for a geodesic mapping:

$$\bar{R}_{ijk}^h = R_{ijk}^h + \varphi_{ij}\delta_k^h - \varphi_{ik}\delta_j^h, \tag{3}$$

$$\bar{R}_{ij} = R_{ij} + (n-1)\varphi_{ij},\tag{4}$$

here $\varphi_{ij} = \varphi_{i,j} - \varphi_i \varphi_j$; R_{ijk}^h , R_{ij} - Riemannian and Ricci tensors. Geodesic mapping that differs from homothety is called non-trivial. A certain pseudo-Riemannian space V_n permits non-trivial geodesic mapping when it contains a solution of system of differential equations in respect to tensor $a_{ij} = a_{ji} \neq cg_{ij}$ and vector $\lambda_i = \lambda_{,i} \neq 0$. It is a necessary and sufficient condition. This system is called a linear form of main equations. Linear form of main equations for geodesic mappings theory can be written as follows [17]

$$a_{ij,k} = \lambda_i g_{jk} + \lambda_j g_{ik},\tag{5}$$

$$n\lambda_{i,j} = \mu g_{ij} + a_{\alpha i} R^{\alpha}_{j} - a_{\alpha \beta} R^{\alpha \beta}_{iii}, \tag{6}$$

here $\mu=\lambda_{\alpha,\beta}g^{\alpha\beta}$; $R^i_{\ j}=R_{\alpha j}g^{\alpha i}$; $R^h_{\ ij}=R^h_{ij\alpha}g^{\alpha}_{\ i}$. It follows from the latter:

$$(n-1)\mu_{,i} = 2(n+1)\lambda_{\alpha}R_{i}^{\alpha} + a_{\alpha\beta}(2R_{.i,.}^{\alpha\beta} - R_{.i}^{\alpha\beta}). \tag{7}$$

Solutions (2) and (5) are connected by relation

$$a_{ij} = e^{2\varphi} \bar{g}^{\alpha\beta} g_{\alpha i} g_{\beta j};$$

$$\lambda_i = -e^{2\varphi} \bar{g}^{\alpha\beta} g_{\alpha i} g_{\beta}.$$
 (8)

System of equations (5), (6) and (7) opens a possibility to answer a question: whether a certain pseudo-Riemannian space V_n permits a geodesic mapping onto a pseudo-Riemannian space \bar{V}_n . The problem is reduced to finding the integrability conditions of these equations and their differential extensions. This system is called a system of main equations of theory of geodesic mappings [11, 12]. Pseudo-Riemannian spaces $V_n(n > 2)$ are called quasi-Einstein spaces, when the following condition is true

$$R_{ij} = \frac{R}{n}g_{ij} + U_i U_j,$$

here U_i is defined as gradient vector, or otherwise

$$U_i = U_{.i} = \partial_i U$$
.

The definition implies that vector U_i is a necessarily isotropic vector [6]. R is a scalar curvature, selected in a way that $R = R_{\alpha\beta}g^{\alpha\beta}$. The work [8], proves that when a quasi-Einstein space V_n permits non-trivial geodesic mappings, then for this space the following condition is true:

$$\lambda_{i,j} = \mu g_{ij} + \frac{R}{n(n-1)} a_{ij},\tag{9}$$

or

$$\lambda_i - \nu U_i = 0. ag{10}$$

According to the latter statement, quasi-Einstein spaces can be subdivided into three types:

- 1. Main type when the equation (9) is true, while (10) is not true;
- 2. Particular type when the equation (10) is true and the equation (9) is not;
- 3. Special type when both equations (9) and (10) are true.

In the further discussion we are going to treat different types of quasi-Einstein spaces consequently.

QUASI-EINSTEIN SPACES OF THE MAIN TYPE

Let us treat a quasi-Einstein space of the main type, namely every quasi-Einstein space, which permits non-trivial geodesic mappings and where conditions (5), (9) are true. So far as it is proved in the work [8], then there are following conditions imposed on the invariant μ

$$\mu_{,i} = \frac{2R}{n(n-1)},\tag{11}$$

and a scalar curvature R is a constant. Let us find a covariant derivative for the equation (8) and take into account the equation (2)

$$\lambda_{ij} = -e^{2\varphi}\varphi_{\alpha,j}\bar{g}^{\alpha\beta}g_{\beta i} + e^{2\varphi}\varphi_{\alpha}\varphi_{\beta}\bar{g}^{\alpha\beta}g_{ij} + e^{2\varphi}\varphi_{j}\varphi_{\alpha}\bar{g}^{\alpha\beta}g_{\beta i}, \tag{12}$$

here \bar{g}^{ij} are elements of an inverse matrix for a metric tensor \bar{V}_n , of a space that corresponds in a geodesic sense to V_n . Let us substitute (10) in (12), and then, take into account (8) and multiply the result by $e^{-2\varphi}$

$$e^{-2\varphi}\mu g_{ij} + \frac{2R}{n(n-1)}\bar{g}^{\alpha\beta}g_{\alpha i}g_{\beta j} = -\varphi_{\alpha,j}\bar{g}^{\alpha\beta}g_{\beta i} + \varphi_{\alpha}\varphi_{\beta}\bar{g}^{\alpha\beta}\bar{g}_{ij} + \varphi_{j}\varphi_{\alpha}\bar{g}^{\alpha\beta}g_{\beta i}. \tag{13}$$

Multiplying (13) by $g^{i\alpha}\bar{g}^{\beta k}$, we obtain

$$\varphi_{k,j} - \varphi_k \varphi_i = \bar{B}\bar{g}_{kj} - \frac{R}{n(n-1)}g_{kj},\tag{14}$$

where $\bar{B} = \varphi_{\alpha}\varphi_{\beta}\bar{g}^{\alpha\beta} - e^{2\varphi}\mu$. \bar{B} is some uniquely defined constant, so far as it is proved in the work [14]. Taking into account (14), we can re-write the equation (4) in the following way

$$\bar{R}_{ij} - \bar{B} \cdot (n-1)\bar{g}_{ij} = R_{ij} - \frac{R}{n}g_{kj}.$$
 (15)

Eq. (15) and the definition of quasi-Einstein spaces imply the following statement

Theorem 1. A geodesic mapping of pseudo-Riemannian quasi-Einstein spaces of the main type results in a generalized quasi-Einstein space and the following is true

$$D_{ij} = \left(\bar{B}(n-1) - \frac{\bar{R}}{n}\right)\bar{g}_{ij},\tag{16}$$

here \bar{R} is a scalar curvature \bar{V}_n .

QUASI-EINSTEIN SPACES OF PARTICULAR TYPE

In the following discussion, we will turn our attention of quasi-Einstein spaces of the particular type. Let us treat quasi-Einstein spaces of the particular type. The following statement is true for them

$$\lambda_i = \nu U_i \tag{17}$$

and for convenience

$$U_i = s\lambda_i, \tag{18}$$

here $s = \frac{1}{v}$. Then, the above-mentioned expressions can be re-written in the following way

$$R_{ij} - \frac{R}{n}g_{ij} = S^2 \lambda_i \lambda_j; \tag{19}$$

$$\lambda^{\alpha} a_{\alpha i} = \rho \lambda_i. \tag{20}$$

Let us differentiate (18)

$$U_{i,j} = S_{j}\lambda_{i} + S\lambda_{i,j}. \tag{21}$$

Alternating the latter

$$S_{i}\lambda_{i} - S_{i}\lambda_{j} = 0, (22)$$

let us wrap (22) with a vector η^i selected in a such way that $\eta^{\alpha} \lambda_{\alpha} = 1$. Then, we arrive at

$$S_i = \gamma \lambda_i, \tag{23}$$

where $\gamma \stackrel{def}{=} S_{\alpha} \eta^{\alpha}$. Then, the equation (21) is re-written as follows

$$U_{i,j} = \gamma \lambda_i \lambda_j + S \lambda_{i,j}. \tag{24}$$

As far as the vector U_i is an isotropic vector, then the equation (17) implies that λ_i is an istropic vector too. Eqs. (19) and (24) can be transformed respectively to

$$\lambda_{\alpha} R_{i}^{\alpha} = \frac{R}{n} \lambda_{i}; \tag{25}$$

$$U_{\alpha}^{\ \alpha} = S \lambda_{\alpha}^{\ \alpha}, \tag{26}$$

here $\lambda_{\alpha}^{\ \alpha} = \lambda_{\alpha\beta} g^{\alpha\beta}$.

Let us prove the following theorem:

Theorem 2. The following conditions are true for the quasi-Einstein spaces of the particular type

$$\lambda^{\alpha}{}_{i}a_{\alpha i} = \stackrel{1}{\rho}\lambda_{i}\lambda_{j} + \rho\lambda_{i,j}. \tag{27}$$

Proof.

Let us differentiate (20) taking into account (5) and the fact that λ^i is an isotropic vector, then we arrive

$$\lambda_i \lambda_j + \lambda^{\alpha}_{i} a_{\alpha i} = \rho_i \lambda_i + \rho \lambda_{i,j}. \tag{28}$$

Let us alternate, taking into account Lemma 1 from the work [14]:

$$\rho_i \lambda_i - \rho_i \lambda_j = 0. \tag{29}$$

Let us multiply by the vector η^i selected in such a way that $\eta^i \lambda_i = 1$. Then we get

$$\lambda_{i}^{\alpha} a_{\alpha i} = (k-1)\lambda_{i}\lambda_{j} + \rho\lambda_{i,j}. \tag{30}$$

Here $k = \eta^{\alpha} \rho_{\alpha}$. Thus, the theorem is proved and we should note that $\rho = k - 1$.

It is well known [14] that tensor a_{ij} complies to the conditions

$$a_{\alpha\beta}T_{ij}^{\alpha\beta} = 0, (31)$$

where

$$T_{ij}^{\alpha\beta} = \delta_i^{\alpha} R_j^{\beta} - \delta_j^{\alpha} R_i^{\beta}. \tag{32}$$

Pseudo-Riemannian space which contain

$$a_{\alpha\beta}T^{\alpha\beta}_{ij,k} = 0, (33)$$

will be called geodesic Ricci-symmetrical. Let us treat tensor

$$T_{ijkl}^{\alpha\beta} = \delta_j^{\alpha} R_{ikl}^{\beta} + \delta_k^{\alpha} R_{ilj}^{\beta} + \delta_l^{\alpha} R_{ijk}^{\beta}. \tag{34}$$

It is true for tensor a_{ij}

$$a_{\alpha\beta}T^{\alpha\beta}_{ijkl} = 0. (35)$$

Let us call spaces, which comply to the conditions

$$a_{\alpha\beta}T^{\alpha\beta}_{ijkl,m} = 0, (36)$$

geodesic symmetrical spaces.

Wrapping (34) by indices i, j, we obtain a statement

Lemma 1. Geodesic symmetrical spaces are geodesic Ricci-symmetrical spaces.

The following statement is true.

Theorem 3. A quasi-Einstein space V_n is a space of the particular type with a sufficiency and necessity when V_n is a geodesic Ricci-symmetrical space and the equation (9) should not be true for it.

Proof.

Let us differentiate (31) taking into account (33) and (5). We obtain

$$\lambda_{\alpha} R_{i}^{\alpha} g_{jk} + \lambda_{j} R_{ik} - \lambda_{\alpha} R_{j}^{\alpha} g_{ik} - \lambda_{i} R_{jk} = 0.$$

$$(37)$$

By substitution of (25) in (37), we get

$$\lambda_i \left(R_{jk} - \frac{R}{n} g_{kj} \right) - \lambda_j \left(R_{ik} - \frac{R}{n} g_{ik} \right) = 0. \tag{38}$$

The latter equation proves the theorem is true. Whether the obtain result is a sufficient condition, we can determine by direct substitution of formula e defining the particular type of quasi-Einstein spaces into (33).

The research on this issue was carried out by application of the methods developed in the works [18, 19].

Theorem 4. There is no geodesic symmetrical pseudo-Rieamnnian spaces of a constant scalar curvature, belonging to the particular type.

Proof.

Eq. (35), taking into account (5), (36), implies

$$\lambda_{\alpha} R_{ikl}^{\alpha} g_{im} + \lambda_{\alpha} R_{ili}^{\alpha} g_{km} + \lambda_{i} R_{mjkl} + \lambda_{k} R_{mjli} + \lambda_{\alpha} R_{iik}^{\alpha} g_{lm} + \lambda_{l} R_{mjik} = 0.$$
(39)

Wrapping (39) by indices i, m and, taking into account the definition of a quasi-Einstein space, we can formulate the following equation

$$\lambda_{\alpha} R_{ijk}^{\alpha} = \frac{R}{n(n-1)} (\lambda_k g_{ij} - \lambda_j g_{ik}). \tag{40}$$

Integrability conditions of equations (5) take the following shape

$$a_{\alpha i}R^{\alpha}_{ikl} + a_{\alpha j}R^{\alpha}_{ikl} = \lambda_{li}g_{jk} + \lambda_{lj}g_{ik} - \lambda_{ki}g_{jl} - \lambda_{kj}g_{il}. \tag{41}$$

Let us multiply (41) by λ^l and wrap it by index l. Then taking into account that vector λ_i is an isotropic vector, we obtain

$$a_i^{\alpha} R_{kj\alpha}^{\beta} \lambda_{\beta} + a_j^{\alpha} R_{ki\alpha}^{\beta} \lambda_{\beta} = -\lambda_{ki} \lambda_j - \lambda_{kj} \lambda_i. \tag{42}$$

Substituting (40) and regrouping the members, we get

$$\lambda_{i} \left(\frac{R\rho}{n(n-1)} g_{jk} - \frac{R}{n(n-1)} a_{jk} + \lambda_{jk} \right) + \lambda_{j} \left(\frac{R\rho}{n(n-1)} g_{ik} - \frac{R}{n(n-1)} a_{ik} + \lambda_{ik} \right) = 0. \tag{43}$$

Alternating (43) by indices i, k. Reassigning the indices j and k and adding the result to (43), we arrive at

$$\lambda_{ij} = -\frac{R\rho}{n(n-1)}g_{ij} + \frac{R}{n(n-1)}a_{ij}.$$
(44)

So the theorem is proved.

CONCLUSIONS

Pseudo-Riemannian quasi-Einstein spaces hold an important position in the theory of geodesic mappings of generalized spaces. They are a direct generalization for Einstein spaces and as such find numerous applications in mechanics and physics. Every quasi-Einstein space is classified into three types according to their properties in relation to geodesic mappings. It is proved that equations, which define non-trivial geodesic mappings, are analogous to corresponding equations of Einstein spaces. There are some types which permit a notable deviation from these analogies [3, 5, 15, 20]. The directions for future research are study on pseudo-Riemannian spaces of small dimensions, construction of classes of geodesically correspondent spaces, and of geodesic mapping "in general."

REFERENCES

- [1] A.V. Bolsinov, V. Kiosak, and V.S. Matveev (2009) A Fubini Theorem for pseudo-Riemannian metrics, *Journal of the London Mathematical Society* **80**(2), 341–356.
- [2] L. Evtushik, V. Kiosak, and J. Mikeš (2010) The mobility of Riemannian spaces with respect to conformal mappings onto Einstein spaces, *Russian Mathematics*, **54**(80), 29–33.
- [3] A. Fedorova, V. Kiosak, V. Matveev, and S. Rosemann (2012) The only Kähler manifold with degree of mobility at least 3 is (CP(n), g Fubini-Study), *Proceedings of the London Mathematical Society*, https://doi.org/10.1112/plms/pdr053.
- [4] I. Hinterleitner and V.A. Kiosak (2008) φ (Ric)-vector fields in Riemannian spaces, *Archivum Mathematicum* (*Brno*) **44**(5), 385–390.
- [5] I. Hinterleitner and V. Kiosak (2010) Special Einstein's equations on Kähler manifolds, Archivum Mathematicum (Brno) 46(5), 333–337.
- [6] V. A. Kiosak (2012) On the conformal mappings of quasi-Einstein spaces, *Journal of Mathematical Sciences* (*United States*) **184**(1), 12–18.
- [7] V. Kiosak and I. Hinterleitner, " φ (Ric)-vector fields on conformally flat spaces," in *AIP CP1191* (American Institute of Physics, Melville, NY, 2009), pp.98–103, https://doi.org/10.1063/1.3275604.
- [8] V.A. Kiosak and V.S. Kovalova (2020) Geodesic mappings of quasi-Einstein spaces with a constant scalar curvature, *Mat. Stud.* 53(2), 212–217, https://doi.org/10.30970/ms.53.2.212–217.
- [9] V. Kiosak, O. Lesechko, and O. Savchenko, "Mappings of spaces with affine connection," in 17th Conference on Applied Mathematics, APLIMAT 2018 - Proceedings (Bratislava, 2018), pp.563–569.
- [10] V. Kiosak and V. S. Matveev (2009) There are no conformal Einstein rescalings of complete pseudo-Riemannian Einstein metrics, *C. R. Acad. Sci. Paris, Ser. I* **347**(17-18), 1067–1069.
- [11] V. Kiosak and V. Matveev (2014) There exist no 4-dimensional geodesically equivalent metrics with the same stress-energy tensor, *Journal of Geometry and Physics* **78**, 1–11.
- [12] V.A. Kiosak, V.S. Matveev, J. Mikeš, and I.G. Shandra (2010) On the degree of geodesic mobility for Riemannian metrics, *Mathematical Notes* **87**(4), 586–587.
- [13] V. Kiosak, A. Savchenko, and O. Gudyreva, "On the conformal mappings of special quasi-Einstein spaces," in *AMiTaNS'19* AIP CP2164, edited by M. Todorov (American Institute of Physics, Melville, NY, 2019), paper 040001, https://doi.org/10.1063/1.5130793.
- V. Kiosak, A. Savchenko, and G. Kovalova (2020) Geodesic mappings of compact quasi-Einstein spaces, I, *Proceedings of the International Geometry Center* 13(1), 35–48, https://doi.org/10.15673/tmgc.v13i1.1711.
- [15] V. Kiosak, A. Savchenko, and T. Shevchenko, "Holomorphically projective mappings of special Kähler manifolds," in *AMiTaNS'18* AIP CP2025, edited by M. Todorov (American Institute of Physics, Melville, NY, 2018), paper 08004, urlhttps://doi.org/10.1063/1.5064924.
- [16] J. Mikeš, I. Hinterleitner, and V. A. Kiosak, "On the theory of geodesic mappings of Einstein spaces and their generalizations," in *AIP CP861* (American Institute of Physics, Melville, NY, 2006), pp.428–435, https://doi.org/10.1063/1.2399606.
- [17] N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces (Nauka, Moscow, 1979), 255p. [in Russian]
- [18] E.N. Sinyukova (1981) Geodesic mappings of certain special Riemainnia spaces, *Mathematical Notes* **30**(6), 946-949.
- [19] H.N. Sinyukova (2011) Geodesic uniqueness in the whole of some generally recurrent Riemannia spaces, *J.Math.Sci* **177**(5), 710-715.
- [20] M. Zarichnyi, A. Savchenko, V. Kiosak, "Strong topology on the set of persistence diagrams," in *AMiTaNS'19* AIP CP2164, edited by M. Todorov (American Institute of Physics, Melville, NY, 2019), paper 040006.