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Abstract. The paper treats a particular type of pseudo-Riemannian spaces, namely quasi-Einstein spaces with gradient defining
vector. These spaces are a generalization of well-known Einstein spaces. There are three types of these spaces that permit locally
geodesic mappings. We studied some geometric properties of every type.

INTRODUCTION

Let us study a pseudo-Riemannian space Vn(n > 2), with a metric tensor gi j. Here we construct an Einstein tensor in
this space. The tensor is defined by a known expression:

Ei j
de f
=Ri j − R

n
gi j,

where Ri j – Ricci tensor Ri j
de f
=Rαi jα, R is a scalar curvature Rαβgαβ = R, Rh

i jk – Riemannian tensor. A defect of Einstein

tensor [13] is a tensor Di j, defined by an equation

Ei j − Di j = 0.

When selecting a special type of tensor Di j, one can select a particular type of special pseudo-Riemannian spaces. For
example, if Di j is a linear combination of metric tensor and covariant derivative of a certain vector, then taking into
account coefficients of this combination, one can obtain ϕ(Ric) spaces or Ricci solitons [4, 7]. When Di j is represented
by a simple bivector, called defining, then the space is quasi-Einstein [6]. Mapping is a main way for modeling of the
above-mentioned spaces. We conducted a research aimed at conformal and geodesic mappings of pseudo-Riemannian
spaces with various types of deformation tensor of Einstein tensor [2, 9, 10]. This work treats geodesic mappings of
quasi-Einstein spaces with gradient defining vector. These spaces are subdivided into three types: main, particular and
special. The obtained results were applied for a research on some geometric properties of spaces of every type.

BASIC EQUATIONS OF GEODESIC MAPPINGS THEORY

Bijection of points of pseudo-Riemannian spaces Vn with a metric tensor gi j and V̄n with a metric tensor ḡi j is a
geodesic mapping when every geodesic line Vn is transformed into a geodesic line V̄n. Pseudo-Riemannian spaces
Vn and V̄n that permit a geodesic mapping between them are called spaces in geodesic correspondence or belonging
to a single geodesic class. In order to define pseudo-Riemannian spaces Vn and V̄n as permitting bijective geodesic
mappings there is a necessary and sufficient condition [17]

Γ̄h
i j = Γ

h
i j + ϕiδ

h
j + ϕ jδ

h
i , (1)
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or otherwise, taking into account a covariant constancy of a metric tensor,

ḡi j,k = 2ϕkḡi j + ϕiḡ jk + ϕ jḡik, (2)

here ϕi is a certain (necessarily gradient) vector; Γh
i j, Γ̄

h
i j – Christoffel symbols Vn and V̄n respectively; δhi – Kronecker

symbols; comma “,” is a sign of covariant derivatives in respect to connectivity Vn [1].
Eqs. (1) and (2) are equivalent, they are necessary and sufficient conditions for bijective geodesic correspondence

of pseudo-Riemannian spaces Vn and V̄n. The equations represent a necessary condition for a geodesic mapping:

R̄h
i jk = Rh

i jk + ϕi jδ
h
k − ϕikδ

h
j , (3)

R̄i j = Ri j + (n − 1)ϕi j, (4)

here ϕi j = ϕi, j−ϕiϕ j; Rh
i jk,Ri j – Riemannian and Ricci tensors. Geodesic mapping that differs from homothety is called

non-trivial. A certain pseudo-Riemannian space Vn permits non-trivial geodesic mapping when it contains a solution
of system of differential equations in respect to tensor ai j = a ji � cgi j and vector λi = λ,i � 0. It is a necessary and
sufficient condition. This system is called a linear form of main equations. Linear form of main equations for geodesic
mappings theory can be written as follows [17]

ai j,k = λig jk + λ jgik, (5)

nλi, j = μgi j + aαiRαj − aαβR
α β
. i j . , (6)

here μ = λα,βgαβ; Ri
j = Rα jgαi; Rh k

i j = Rh
i jαg

α k
. . It follows from the latter:

(n − 1)μ,i = 2(n + 1)λαRαi + aαβ(2Rα β. i, . − Rαβ,i). (7)

Solutions (2) and (5) are connected by relation

ai j = e2ϕḡαβgαigβ j;

λi = −e2ϕḡαβgαigβ. (8)

System of equations (5), (6) and (7) opens a possibility to answer a question: whether a certain pseudo-Riemannian
space Vn permits a geodesic mapping onto a pseudo-Riemannian space V̄n. The problem is reduced to finding the
integrability conditions of these equations and their differential extensions. This system is called a system of main
equations of theory of geodesic mappings [11, 12]. Pseudo-Riemannian spaces Vn(n > 2) are called quasi-Einstein
spaces, when the following condition is true

Ri j =
R
n

gi j + UiU j,

here Ui is defined as gradient vector, or otherwise

Ui = U,i = ∂iU.

The definition implies that vector Ui is a necessarily isotropic vector [6]. R is a scalar curvature, selected in a way that
R = Rαβgαβ. The work [8], proves that when a quasi-Einstein space Vn permits non-trivial geodesic mappings, then
for this space the following condition is true:

λi, j = μgi j +
R

n(n − 1)
ai j, (9)

or
λi − vUi = 0. (10)

According to the latter statement, quasi-Einstein spaces can be subdivided into three types:

1. Main type – when the equation (9) is true, while (10) is not true;
2. Particular type – when the equation (10) is true and the equation (9) is not;
3. Special type – when both equations (9) and (10) are true.

In the further discussion we are going to treat different types of quasi-Einstein spaces consequently.
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QUASI-EINSTEIN SPACES OF THE MAIN TYPE

Let us treat a quasi-Einstein space of the main type, namely every quasi-Einstein space, which permits non-trivial
geodesic mappings and where conditions (5), (9) are true. So far as it is proved in the work [8], then there are
following conditions imposed on the invariant μ

μ,i =
2R

n(n − 1)
, (11)

and a scalar curvature R is a constant. Let us find a covariant derivative for the equation (8) and take into account the
equation (2)

λi j = −e2ϕϕα, jḡαβgβi + e2ϕϕαϕβḡαβgi j + e2ϕϕ jϕαḡαβgβi, (12)

here ḡi j are elements of an inverse matrix for a metric tensor V̄n, of a space that corresponds in a geodesic sense to Vn.
Let us substitute (10) in (12), and then, take into account (8) and multiply the result by e−2ϕ

e−2ϕμgi j +
2R

n(n − 1)
ḡαβgαigβ j = −ϕα, jḡαβgβi + ϕαϕβḡαβḡi j + ϕ jϕαḡαβgβi. (13)

Multiplying (13) by giαḡβk, we obtain

ϕk, j − ϕkϕi = B̄ḡk j − R
n(n − 1)

gk j, (14)

where B̄ = ϕαϕβḡαβ − e2ϕμ. B̄ is some uniquely defined constant, so far as it is proved in the work [14]. Taking into
account (14), we can re-write the equation (4) in the following way

R̄i j − B̄ · (n − 1)ḡi j = Ri j − R
n

gk j. (15)

Eq. (15) and the definition of quasi-Einstein spaces imply the following statement

Theorem 1. A geodesic mapping of pseudo-Riemannian quasi-Einstein spaces of the main type results in a gen-
eralized quasi-Einstein space and the following is true

Di j =

(
B̄(n − 1) − R̄

n

)
ḡi j, (16)

here R̄ is a scalar curvature V̄n.

QUASI-EINSTEIN SPACES OF PARTICULAR TYPE

In the following discussion, we will turn our attention of quasi-Einstein spaces of the particular type. Let us treat
quasi-Einstein spaces of the particular type. The following statement is true for them

λi = vUi (17)

and for convenience

Ui = sλi, (18)

here s =
1

v
. Then, the above-mentioned expressions can be re-written in the following way

Ri j − R
n

gi j = S 2λiλ j; (19)

λαaαi = ρλi. (20)
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Let us differentiate (18)
Ui, j = S jλi + Sλi, j. (21)

Alternating the latter
S jλi − S iλ j = 0, (22)

let us wrap (22) with a vector ηi selected in a such way that ηαλα = 1. Then, we arrive at

S i = γλi, (23)

where γ
de f
= S αηα. Then, the equation (21) is re-written as follows

Ui, j = γλiλ j + Sλi, j. (24)

As far as the vector Ui is an isotropic vector, then the equation (17) implies that λi is an istropic vector too. Eqs. (19)
and (24) can be transformed respectively to

λαRαi =
R
n
λi; (25)

U α
α , = Sλ αα , , (26)

here λ αα , = λαβg
αβ.

Let us prove the following theorem:

Theorem 2. The following conditions are true for the quasi-Einstein spaces of the particular type

λα, jaαi =
1
ρλiλ j + ρλi, j. (27)

Proof.
Let us differentiate (20) taking into account (5) and the fact that λi is an isotropic vector, then we arrive

λiλ j + λ
α
, jaαi = ρ jλi + ρλi, j. (28)

Let us alternate, taking into account Lemma 1 from the work [14]:

ρ jλi − ρiλ j = 0. (29)

Let us multiply by the vector ηi selected in such a way that ηiλi = 1. Then we get

λα, jaαi = (k − 1)λiλ j + ρλi, j. (30)

Here k = ηαρα. Thus, the theorem is proved and we should note that
1
ρ = k − 1.

It is well known [14] that tensor ai j complies to the conditions

aαβT
αβ
i j = 0, (31)

where
Tαβi j = δ

α
i Rβj − δαj Rβi . (32)

Pseudo-Riemannian space which contain

aαβT
αβ
i j,k = 0, (33)

will be called geodesic Ricci-symmetrical. Let us treat tensor

Tαβi jkl = δ
α
j Rβikl + δ

α
k Rβil j + δ

α
l Rβi jk. (34)

It is true for tensor ai j

aαβT
αβ
i jkl = 0. (35)

Let us call spaces, which comply to the conditions

aαβT
αβ
i jkl,m = 0, (36)

geodesic symmetrical spaces.
Wrapping (34) by indices i, j, we obtain a statement
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Lemma 1. Geodesic symmetrical spaces are geodesic Ricci-symmetrical spaces.

The following statement is true.

Theorem 3. A quasi-Einstein space Vn is a space of the particular type with a sufficiency and necessity when Vn
is a geodesic Ricci-symmetrical space and the equation (9) should not be true for it.

Proof.
Let us differentiate (31) taking into account (33) and (5). We obtain

λαRαi g jk + λ jRik − λαRαj gik − λiR jk = 0. (37)

By substitution of (25) in (37), we get

λi

(
Rjk − R

n
gk j

)
− λ j

(
Rik − R

n
gik

)
= 0. (38)

The latter equation proves the theorem is true. Whether the obtain result is a sufficient condition, we can determine by
direct substitution of formula e defining the particular type of quasi-Einstein spaces into (33).

The research on this issue was carried out by application of the methods developed in the works [18, 19].

Theorem 4. There is no geodesic symmetrical pseudo-Rieamnnian spaces of a constant scalar curvature, belong-
ing to the particular type.

Proof.
Eq. (35), taking into account (5), (36), implies

λαRαjklgim + λαRαjligkm + λiRm jkl + λkRm jli + λαRαjikglm + λlRm jik = 0. (39)

Wrapping (39) by indices i,m and, taking into account the definition of a quasi-Einstein space, we can formulate the
following equation

λαRαi jk =
R

n(n − 1)
(λkgi j − λ jgik). (40)

Integrability conditions of equations (5) take the following shape

aαiRαjkl + aα jRαikl = λlig jk + λl jgik − λkig jl − λk jgil. (41)

Let us multiply (41) by λl and wrap it by index l. Then taking into account that vector λi is an isotropic vector, we
obtain

aαi Rβk jαλβ + aαj Rβkiαλβ = −λkiλ j − λk jλi. (42)

Substituting (40) and regrouping the members, we get

λi

(
Rρ

n(n − 1)
g jk − R

n(n − 1)
a jk + λ jk

)
+ λ j

(
Rρ

n(n − 1)
gik − R

n(n − 1)
aik + λik

)
= 0. (43)

Alternating (43) by indices i, k. Reassigning the indices j and k and adding the result to (43), we arrive at

λi j = − Rρ
n(n − 1)

gi j +
R

n(n − 1)
ai j. (44)

So the theorem is proved.

CONCLUSIONS

Pseudo-Riemannian quasi-Einstein spaces hold an important position in the theory of geodesic mappings of general-
ized spaces. They are a direct generalization for Einstein spaces and as such find numerous applications in mechan-
ics and physics. Every quasi-Einstein space is classified into three types according to their properties in relation to
geodesic mappings. It is proved that equations, which define non-trivial geodesic mappings, are analogous to corre-
sponding equations of Einstein spaces. There are some types which permit a notable deviation from these analogies
[3, 5, 15, 20]. The directions for future research are study on pseudo-Riemannian spaces of small dimensions, con-
struction of classes of geodesically correspondent spaces, and of geodesic mapping “in general.”
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