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Abstract. The paper treats a particular type of pseudo-Riemannian spaces, namely quasi-Einstein spaces with gradient defining
vector. These spaces are a generalization of well-known Einstein spaces. There are three types of these spaces that permit locally
geodesic mappings. We studied some geometric properties of every type.

INTRODUCTION

Let us study a pseudo-Riemannian space V,,(n > 2), with a metric tensor g;;. Here we construct an Einstein tensor in
this space. The tensor is defined by a known expression:

def R
E; =R~ e

where R;; — Ricci tensor R;; (éfR;’j > R 1s a scalar curvature Rdﬁg"ﬁ =R, R;’jk — Riemannian tensor. A defect of Einstein

tensor [13] is a tensor D;;, defined by an equation
Eij - D,‘j = 0

When selecting a special type of tensor D;;, one can select a particular type of special pseudo-Riemannian spaces. For
example, if D;; is a linear combination of metric tensor and covariant derivative of a certain vector, then taking into
account coefficients of this combination, one can obtain ¢(Ric) spaces or Ricci solitons [4, 7]. When D;; is represented
by a simple bivector, called defining, then the space is quasi-Einstein [6]. Mapping is a main way for modeling of the
above-mentioned spaces. We conducted a research aimed at conformal and geodesic mappings of pseudo-Riemannian
spaces with various types of deformation tensor of Einstein tensor [2, 9, 10]. This work treats geodesic mappings of
quasi-Einstein spaces with gradient defining vector. These spaces are subdivided into three types: main, particular and
special. The obtained results were applied for a research on some geometric properties of spaces of every type.

BASIC EQUATIONS OF GEODESIC MAPPINGS THEORY

Bijection of points of pseudo-Riemannian spaces V, with a metric tensor g;; and V, with a metric tensor g; jis a
geodesic mapping when every geodesic line V,, is transformed into a geodesic line V,,. Pseudo-Riemannian spaces
V, and V, that permit a geodesic mapping between them are called spaces in geodesic correspondence or belonging
to a single geodesic class. In order to define pseudo-Riemannian spaces V, and V,, as permitting bijective geodesic
mappings there is a necessary and sufficient condition [17]

T} =T} + @0 + 9,6}, 1)
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or otherwise, taking into account a covariant constancy of a metric tensor,
Gijok = 2018ij + Pigjk + P;&iks (2)

here ¢; is a certain (necessarily gradient) vector; FZ, l:f’j — Christoffel symbols V,, and V, respectively; 65.’ — Kronecker

TR

symbols; comma “,” is a sign of covariant derivatives in respect to connectivity V,, [1].
Egs. (1) and (2) are equivalent, they are necessary and sufficient conditions for bijective geodesic correspondence
of pseudo-Riemannian spaces V,, and V,,. The equations represent a necessary condition for a geodesic mapping:
B h h h
Rl‘jk = Rijk + ‘Pij(sk - Qi0;, 3)

Rij = Rij + (n — Dejjs 4)
here ¢;; = i, j—pip); Rf’jk, R;;—Riemannian and Ricci tensors. Geodesic mapping that differs from homothety is called
non-trivial. A certain pseudo-Riemannian space V,, permits non-trivial geodesic mapping when it contains a solution
of system of differential equations in respect to tensor a;; = aj; # cg;; and vector 4; = A; # 0. It is a necessary and
sufficient condition. This system is called a linear form of main equations. Linear form of main equations for geodesic
mappings theory can be written as follows [17]

ajjk = Aigjk + A8k 5)
ndij = pgij + auiR — agR*,”, 6)

here pt = A4,58"; R, = Rajg""; Rhl.jk = Rf.’j 8" % It follows from the latter:

(= Dy = 2(n + DART + agp2R"P =R ). 7
Solutions (2) and (5) are connected by relation
aij = €5 gqigp);
A = —e*5Pguigp. ()

System of equations (5), (6) and (7) opens a possibility to answer a question: whether a certain pseudo-Riemannian
space V,, permits a geodesic mapping onto a pseudo-Riemannian space V,. The problem is reduced to finding the
integrability conditions of these equations and their differential extensions. This system is called a system of main
equations of theory of geodesic mappings [11, 12]. Pseudo-Riemannian spaces V,(n > 2) are called quasi-Einstein
spaces, when the following condition is true

R
Rij = —gij+ UiUj,
n
here U; is defined as gradient vector, or otherwise
U,‘ = U‘i = 6,- U.

The definition implies that vector U, is a necessarily isotropic vector [6]. R is a scalar curvature, selected in a way that
R = Raﬁg{’ﬁ. The work [8], proves that when a quasi-Einstein space V,, permits non-trivial geodesic mappings, then
for this space the following condition is true:

R
Aij = Hgij + el )

or
/li—VU,':O. (10)

According to the latter statement, quasi-Einstein spaces can be subdivided into three types:

1. Main type — when the equation (9) is true, while (10) is not true;
2. Particular type — when the equation (10) is true and the equation (9) is not;
3. Special type — when both equations (9) and (10) are true.

In the further discussion we are going to treat different types of quasi-Einstein spaces consequently.
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QUASI-EINSTEIN SPACES OF THE MAIN TYPE

Let us treat a quasi-Einstein space of the main type, namely every quasi-Einstein space, which permits non-trivial
geodesic mappings and where conditions (5), (9) are true. So far as it is proved in the work [8], then there are
following conditions imposed on the invariant y

2R

) o

Mi

and a scalar curvature R is a constant. Let us find a covariant derivative for the equation (8) and take into account the
equation (2)

Aij = —€04, ;8P gp + € 0a0p8™ g1 + €000 g1, (12)
here 2"/ are elements of an inverse matrix for a metric tensor V,,, of a space that corresponds in a geodesic sense to V,,.
Let us substitute (10) in (12), and then, take into account (8) and multiply the result by e~

2R
nn—1)

e ug; + 8"80i88) = —0a.i8" 8pi + Cas8 T + 0108 8. (13)

Multiplying (13) by gz, we obtain

_ R
i~ puei = Boy = 0 8k (14)

where B = ¢,¢58% — e*u1. B is some uniquely defined constant, so far as it is proved in the work [14]. Taking into
account (14), we can re-write the equation (4) in the following way

- - R
Rij—B-(n—1)gij = Rij - ~8kj: (15)

Eq. (15) and the definition of quasi-Einstein spaces imply the following statement

Theorem 1. A geodesic mapping of pseudo-Riemannian quasi-Einstein spaces of the main type results in a gen-
eralized quasi-Einstein space and the following is true

_ R\ _
D;; = (B(Vl -D- ;)gij, (16)
here R is a scalar curvature V,,.

QUASI-EINSTEIN SPACES OF PARTICULAR TYPE

In the following discussion, we will turn our attention of quasi-Einstein spaces of the particular type. Let us treat
quasi-Einstein spaces of the particular type. The following statement is true for them

/li:VU,' (17)

and for convenience
U i = S/l,', (18)

1 . . . . .
here s = —. Then, the above-mentioned expressions can be re-written in the following way
v

R
Rij — ~8ij = S (19)

ﬂaam‘ = p/ll (20)
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Let us differentiate (18)
U,',_/' = Sj/l,' + S/l,"j.

Alternating the latter
Sj/l,«—S,«/lj ZO,

let us wrap (22) with a vector i’ selected in a such way that n%1, = 1. Then, we arrive at

S =y,

where y difS o1 Then, the equation (21) is re-written as follows

Ui,j = ’}//li/lj +S/l,"j.

As far as the vector U, is an isotropic vector, then the equation (17) implies that A; is an istropic vector too. Egs.

and (24) can be transformed respectively to

R
AR = =33
n
Uu,”=84,",
here 4,% = A,58°.
Let us prove the following theorem:
Theorem 2. The following conditions are true for the quasi-Einstein spaces of the particular type

1
/lf’jam =p/li/lj + p/l,-,j.
Proof.

Let us differentiate (20) taking into account (5) and the fact that A’ is an isotropic vector, then we arrive

/liﬂj + /l‘fjam- = pj/l,' + p/l,;j‘
Let us alternate, taking into account Lemma 1 from the work [14]:

pjdi = pidj = 0.

Let us multiply by the vector 7' selected in such a way that 5'A; = 1. Then we get

/lf’ja(,,- = (k - 1)/1,/11 +p/l,"j.

Here k = n%p,. Thus, the theorem is proved and we should note thaté =k-1.

It is well known [14] that tensor a;; complies to the conditions
aaﬁT;;fB = O,
where p
107
T = 67R] - 69R,.
Pseudo-Riemannian space which contain

ag T} =0,

will be called geodesic Ricci-symmetrical. Let us treat tensor

T = 69R0, + 'R + &R

ikl = 9 ik ilj ijk
It is true for tensor a;;
aff _
aopT; ki 0.
Let us call spaces, which comply to the conditions
o _
a”ﬁTijkl,m =0,

geodesic symmetrical spaces.
Wrapping (34) by indices i, j, we obtain a statement
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Lemma 1. Geodesic symmetrical spaces are geodesic Ricci-symmetrical spaces.

The following statement is true.

Theorem 3. A quasi-Einstein space V,, is a space of the particular type with a sufficiency and necessity when V,
is a geodesic Ricci-symmetrical space and the equation (9) should not be true for it.
Proof.
Let us differentiate (31) taking into account (33) and (5). We obtain
/L,R?gjk + /ljR,'k - /laR;Ygik - /1,'Rjk =0. 37
By substitution of (25) in (37), we get
R R
A (Rjk - ngj) —-4; (Rik - ;gik) =0. (38)

The latter equation proves the theorem is true. Whether the obtain result is a sufficient condition, we can determine by
direct substitution of formula e defining the particular type of quasi-Einstein spaces into (33).
The research on this issue was carried out by application of the methods developed in the works [18, 19].

Theorem 4. There is no geodesic symmetrical pseudo-Rieamnnian spaces of a constant scalar curvature, belong-
ing to the particular type.
Proof.

Eq. (35), taking into account (5), (36), implies
ﬂaRyklgim + /laR‘;,igkm + Aiijkl + /lkijli + /IQR(].Yikglm + /11ijik =0. (39)

Wrapping (39) by indices i, m and, taking into account the definition of a quasi-Einstein space, we can formulate the
following equation

" R
AR}y = m(/lkgij = A;8ik)- (40)
Integrability conditions of equations (5) take the following shape
AaiRy + aa Ry = Aigjx + A1j&ik — Aigjt — Awjgir- 41)

Let us multiply (41) by A’ and wrap it by index . Then taking into account that vector A; is an isotropic vector, we
obtain

ARy Ap + aSRG, Ap = —Ad; = Ajd;. 42)
Substituting (40) and regrouping the members, we get
Rp R Rp R
A ik — ik + A |+ A4 ik — ik + A =0. 43
(n(n— l)gﬂ‘ n(n — l)a"k "k) "(n(n— l)gk n(n — l)ak k 43)
Alternating (43) by indices i, k. Reassigning the indices j and k and adding the result to (43), we arrive at

R
/l,'j = - L gij+ aij.
nn-1) nn-1)

(44)

So the theorem is proved.

CONCLUSIONS

Pseudo-Riemannian quasi-Einstein spaces hold an important position in the theory of geodesic mappings of general-
ized spaces. They are a direct generalization for Einstein spaces and as such find numerous applications in mechan-
ics and physics. Every quasi-Einstein space is classified into three types according to their properties in relation to
geodesic mappings. It is proved that equations, which define non-trivial geodesic mappings, are analogous to corre-
sponding equations of Einstein spaces. There are some types which permit a notable deviation from these analogies
[3, 5, 15, 20]. The directions for future research are study on pseudo-Riemannian spaces of small dimensions, con-
struction of classes of geodesically correspondent spaces, and of geodesic mapping “in general.”
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