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Abstract. In this paper we study a special type of pseudo-Riemannian spaces quasi-Einstein spaces of constant scalar curvature.
These spaces are generalizations of known Einstein spaces. We obtained a linear form of the basic equations of the theory of
geodetic mappings for these spaces. The studies are conducted locally in tensor form, without restrictions on the sign and signature
of the metric tensor.

INTRODUCTION

E. Beltrami was the first to consider the question of geodesic mapping of a surface V2 into a surface Ē2 as early as
1865 [1]. He sought a solution for classical problems of cartography known since Lagrange [19]. In 1869 U. Dini
[3] posed a general problem of a possibility of geodesic mapping for a given surface V2 into V̄2. Actually he solved
this problem for Riemannian spaces, however he did it in such a complex way, that the solution was improved since
then on many occasions. In 1896 T. Levi-Civita [20] proposed a particular formulation of the problem (implied by
dynamics equations) and obtained main equations in tensor form [6]. Thereafter tensor methods took the leading
role in differential geometry. H. Weyl, L.P. Eisenhart, V.F. Kagan, G.I. Kruchkovich, A.S. Solodovnikov and others
developed a coherent theory of geodesic mappings of pseudo-Riemannian spaces that was invariant in relation to the
choice of coordinate system. N.S. Syniukov pushed the research further by reduction of the problem to a study of
linear system of differential equations [23]. The linear form of basic equations of theory of geodesic mappings was
simplified and there was a solution found for the problem of cardinalities distribution for a geodesic class of a given
space [15]. Significant progress has been achieved in the study of special pseudo-Riemannian spaces, Einstein spaces
in particular [14, 21]. It appeared that four-dimensional Einstein spaces that differs from spaces of a constant curvature,
do not permit non-trivial geodesic mappings. This fact underlined the necessity of a research on more general classes
of spaces. The latter were built by adding to the internal objects (Ricci tensor, Einstein tensor) both constructions
made of internal objects [16, 18], and some special vector fields [7, 11]. In this paper, following [2, 10], we study
spaces in which the Einstein tensor deviates from zero by some bivector.

BASIC EQUATIONS OF THE THEORY OF GEODESIC MAPPINGS.

The one-to-one correspondence between the points of pseudo-Riemannian spaces Vn with the metric tensor gi j and V̄n
with a metric tensor ḡi j is called a geodesic mapping if any geodesic line in Vn is mapped into a geodesic line in V̄n.
If pseudo-Riemannian spaces Vn and V̄n allow bijective geodesic mapping, we call them spaces that are in geodesic
correspondence, or spaces that belong to the same geodesic class. A necessary and sufficient condition [20] for the
pseudo-Riemannian spaces Vn and V̄n to allow geodetic mapping on each other is

Γ̄h
i j = Γ

h
i j + ϕiδ

h
j + ϕ jδ

h
i , (1)
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or, considering the covariant constancy of the metric tensor -

ḡi j,k = 2ϕkḡi j + ϕiḡ jk + ϕ jḡik, (2)

where ϕi – is some necessary gradient vector, Γh
i j, Γ̄

h
i j – Christoffel symbols Vn and V̄n respectively; δhi – Kronecker

symbols; comma “,” – the sign of the covariant derivative in respect to connectivity of Vn. Eqs. (1) and (2) are equiva-
lent, necessary, and sufficient conditions for pseudo-Riemannian spaces Vn and V̄n to be in geodesic correspondence.
A necessary condition for geodesic mapping is given by the equations:

R̄h
i jk = Rh

i jk + ϕi jδ
h
k − ϕikδ

h
j , (3)

R̄i j = Ri j + (n − 1)ϕi j, (4)

where ϕi j = ϕi, j − ϕiϕ j, Rh
i jk,Ri jk – Riemann and Ricci tensors. A geodesic mapping that differs from homothetic is

called non-trivial. The given pseudo-Riemannian space Vn permits a non-trivial geodesic mapping only in a case when
the system of differential equations has a solution in respect to the tensor ai j = a ji � cgi j and the vector λi = λ,i � 0.
It is a necessary and sufficient condition. The linear form of the basic equations of the theory of geodesic mappings
can be written down as follows [23, p.121]

ai j,k = λig jk + λ jgik. (5)

nλi, j = μgi j + aαiRαj − aαβR
α β
. i j . , (6)

here μ = λα,βgαβ; Ri
j = Rα jgαi; Rh k

i j = Rh
i jαg

α k
. . From the latter we will have [23, p.123]:

(n − 1)μ,i = 2(n + 1)λαRαi + aαβ(2Rα β. i, . − Rαβ,i). (7)

Solutions (2) and (5) are connected by relations

ai j = e2ϕḡαβgαigβ j;

λi = −e2ϕḡαβgαiϕβ.

The system of equations (5), (6) and (7) gives a fundamental possibility to answer the question: does a given pseudo-
Riemannian space Vn allow geodesic mapping to pseudo-Riemannian space V̄n. The question is reduced to a study of
integrability conditions of these differential equations and their differential extensions [15]. The purpose of our work
is to obtain the form of basic equations of the theory of geodesic mappings for quasi-Einstein spaces.

BASIC EQUATIONS OF THE THEORY OF GEODESIC MAPPINGS OF
QUASI-EINSTEIN SPACES.

Let us consider a geodesic mapping of quasi-Einstein spaces, namely pseudo-Riemannian spaces Vn(n > 2) which
satisfy the following condition

Ri j =
R
n

gi j + UiU j, (8)

where Ui — is by definition a gradient vector, i.e.,

Ui = U,i = ∂iU. (9)

It follows from the definition that the vector Ui is, by necessity, an isotropic vector. Given (8), equation [23, p.138]

aαlRαh − aαkRαl = 0, (10)

will take the form
UlUαaαi = UiaαlUα. (11)

From the last equality we have
Uαaαi = ρUi, (12)

where ρ
de f
= aαβUαξβ, ξi – is some vector such that Uαξα = 1. Thus, we are proved
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Theorem 1. If quasi-Einstein space Vn permits non-trivial geodesic mapping, then the vector Ui is the eigenvector
of the tensor matrix ai j.

Let us prove the following theorem

Theorem 2. If quasi-Einstein space Vn permits non-trivial geodesic mapping, then the vectors Ui and λi are
mutually orthogonal, that is

Uαλα = 0. (13)

Proof.
Differentiating (12) with respect to (5) we obtain

Uα, jaαi + Uαλαgi j + λiU j = ρ, jUi + ρUi, j. (14)

Because of the isotropy of the vector Ui, by multiplying (14) on it and contracting it, we have

2UαλαUi = 0, (15)

since Ui is not a zero vector, then the theorem is proved.
Let us now consider the question about non-trivial geodesic mapping of quasi-Einstein spaces of constant scalar

curvature. Let us prove the following theorem

Theorem 3. If the quasi-Einstein space of constant scalar curvature allows non-trivial geodesic mapping, the
vector λi satisfies the conditions

λ α
α j, = τλ j, (16)

here λ α
iα, = λ

α
i,α = λi,αβgαβ, and τ is some invariant.

Proof.
Differentiating

aαiRαjkl + aα jRαikl = λlig jk + λl jgik − λk jgil − λkig jl, (17)

where λi j = λi, j, according to (5), we obtain

λαRαjklgim + λiRm jkl + λαRαiklg jm + λ jRmikl + aαiRαjkl,m + aα jRαikl,m = λli,mg jk + λl j,mgik − λki,mg jl − λk j,mgil.

Contracting the latter by l and m, we will have

λαRαjki + λαR
α
ik j + λiR jk + λ jRik + aαi Rβk jα,β + aαj Rβkiα,β = λ

α
αi, g jk + λ

α
α j, gik − λki, j − λk j,i.

Given that Rαi jk,α = Ri j,k − Rik, j and (8), we obtain

λαRαjki + λαR
α
ik j + λiR jk + λ jRik + U j(ρkUi + ρUi,k − λiUk) − ρUiUk, j

+Ui(ρkU j + ρU j,k − λ jUk) − ρU jUk,i = λ
α

αi, g jk + λ
α

α j, gik − λki, j − λk j,i.

Or, just like that,

λαRαjki + λαR
α
ik j + λiR jk + λ jRik + U j(ρkUi − λiUk) + Ui(ρkU j − λ jUk) = λ α

αi, g jk + λ
α

α j, gik − λki, j − λk j,i.

Alternating the last equality by j, k, we obtain

4λαRαik j + 2U jUiρk − 2UiUkρ j +
R
n

(λ jgik − λkg ji) = λ
α

α j, gik − λ α
αk, gi j. (18)

Multiplying (18) by λi and contracting by i, we get

λ α
α j, λk − λ α

αk, λ j = 0. (19)

This implies (16), where τ — is some invariant such that τ = λ α
βα, η

β, and ηi — is a vector, which satisfies the

condition λαη
α = 1. Thus, the theorem is proved.
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Given (16), equation (18) takes the form

4λαRαik j + 2U jUiρk − 2UiUkρ j +

(R
n
− τ

)
(λ jgik − λkgi j) = 0. (20)

Multiplying (17) by λl, and contracting by l with respect to (20), we obtain

2aαi ραUkU j − 2ρρ jUkUi +

(R
n
− τ

)
(λ jaik − λαaαi g jk) + 2aαj ραUkUi − 2ρρiUkU j

+

(R
n
− τ

)
(λia jk − λαaαj gik) = 4λαλαig jk + 4λαλα jgik − 4λkiλ j − 4λk jλi. (21)

Let us alternate the last equality by j and k. Then we replace the indices i ←→ k in the resulting expression and
summarize the result with (21). We have

2(aαi ρα − ρρi)UkU j + λi

((R
n
− τ

)
a jk + 4λk j

)
= (4λαλαi +

(R
n
− τ

)
λαaαi )g jk. (22)

We contract with g jk, then

4λαλαi +

(R
n
− τ

)
λαaαi = 4μλi, (23)

where

4μ =
1

n

((R
n
− τ

)
aαβ + 4λαβ

)
gαβ. (24)

Given this, we write (22) in the form

2(aαi ρα − ρρi)UkU j + λi

((R
n
− τ

)
a jk + 4λk j − 4μ gk j

)
= 0. (25)

Contracting the latter equality with ηi, we obtain(R
n
− τ

)
a jk + 4λk j − 4μ gk j − 4

1
c UkU j = 0. (26)

Here

2(aαβρα − ρρβ)ηβ
de f
= − 4

1
c. (27)

It is easy to see that

τ =
R(n + 3)

n(n − 1)
. (28)

And then (26) will take the final form

λk j = μgk j +
R

n(n − 1)
ak j+

1
c UkU j. (29)

Differentiating (29), we have

λi, jk = μ,kgi j +
R

n(n − 1)
(λig jk + λ jgik)+

1
c,k UiU j+

1
c Ui,kU j+

1
c UiU j,k. (30)

Contracting by i, j, we obtain

gαβλα,βk = nμ,k +
2R

n(n − 1)
λk. (31)

After using the Ricci identity for quasi-Einstein spaces

gαβ(λα,βk − λα,kβ) = R
n
λk, (32)

we get

μ,i =
2R

n(n − 1)
λi. (33)

Thus, the theorem is true [12]
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Theorem 4. If quasi-Einstein space Vn of constant scalar curvature permits non-trivial geodesic mappings, then
conditions (29), (33) are satisfied.

In the further discussion we are going to treat of compact quasi-Einstein spaces ”in the whole” [2].

GEODESIC MAPPINGS OF COMPACT QUASI-EINSTEIN SPACES

Let us treat a Hausdorff space, where for any point there exists neighborhood which is homeomorphic to a certain
area Rn. There is a pseudo-Riemannian metric on such a manifold that turns the latter in pseudo-Riemannian space Vn
[8, 18, 26]. A point M is called a geodesic point of a curve L, when a tangent vector complies with the condition in
the point

ηn
,αη
α =

dηn

dt
+ Γh

αβη
αηβ. (34)

When a curve is formed exclusively by geodesic points, then, it is called a geodesic line belonging to the above-
mentioned space. Diffeomorphism that that maps every geodesic line Vn to another geodesic line V̄n, is called a
geodesic mapping ”in the whole”. When geodesics from a certain neighborhood of a point are mapped to a certain
neighborhood of another point, then it is a local geodesic mapping. Every geodesic mapping ”in the whole” is also
a local geodesic mapping. The opposite is not true. On the contrary there are potent classes of spaces permitting
local geodesic mappings but restrictive in respect to mappings “in the whole.” Theorems that state non-existence “in
the whole” of a certain type of spaces are called “disappearance theorems” [22]. We will proceed with proof of a
disappearance theorem for the compact quasi-Einstein spaces of constant scalar curvature, starting with the following

Lemma 1. When Vn is a pseudo-Riemannian quasi-Einstein space of constant scalar curvature and a vector λi
has a constant length, then scalar curvature equals to zero.

Proof.
Let us suppose that a vector λi, that complies with the (29) has a constant length, namely

λαλ
α = A, (35)

here A is a certain constant. By differentiating, we move to

λαλ
α
,i = 0. (36)

Taking into account (29), (33), it is easy to see that

μλi +
R

n(n − 1)
λαaαi = 0. (37)

Covariant derivative of the latter after substitution of (29), (33), (35) will take a shape of

3R
n(n − 1)

λiλ j +

(
μ2 +

AR
n(n − 1)

)
gi j +

2μR
n(n − 1)

ai j +
R2

n2(n − 1)2
aαiaαj+

1
c
(
μ +

Rρ
n(n − 1)

)
UiU j = 0. (38)

Let us multiply the latter by λi and wrap by i. It will result in

4RA
n(n − 1)

= 0. (39)

Or in other words, at least one of the constants R and A should equal zero with a necessity. Let us suppose that a
constant A — equals 0. Then equations (38) can be re-written as follows:

3R
n(n − 1)

λiλ j + μ
2gi j +

2μR
n(n − 1)

ai j +
R2

n2(n − 1)2
aαiaαj+

1
c
(
μ +

Rρ
n(n − 1)

)
UiU j = 0. (40)

Multiplying (40) by Ui and wrapping by i, we will get

μ2 +
2μRρ

n(n − 1)
+

(
Rρ

n(n − 1)

)2

= 0. (41)
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Differentiating (40) and wrapping the resulting expression with Ui, we can see that:

2R
n(n − 1)

(
1 +

2Rρ
n(n − 1)

)
= 0. (42)

Let us suppose

(
1 +

2Rρ
n(n − 1)

)
= 0. According to the above statement and the equation (41), μ =

1

2
. And it entails the

conclusion that a scalar curvature equals zero. Thus, we proved in every possible case that R = 0. Lemma is proven.
Let us return to the issue of geodesic mappings ”in the whole”. Here the theorem is true:

Theorem 5. A compact quasi-Einstein space of constant scalar curvature with positive definite metric and posi-
tive scalar curvature does not permit non-trivial geodesic mappings “in the whole.”

O.M. Siniukova suggested to apply the Hopf-Bochner theorem [9] in a new formulation: when a compact pseudo-
Riemannian space Vn contains a positive definite invariant quadratic form Gαβηαηβ, then for a function ϕ(x) an operator

Δφ = Gαβφ,αβ (43)

does not change a sign, so ϕ = const, and Δφ = 0 [24, 25]. A quasi-Einstein space of constant scalar curvature has an
invariant [17]

φ = λαλ
α. (44)

Then
φi = 2λα,iλ

α (45)

and
φi, j = 2(λαiλ

α
, j + λα,i jλ

α). (46)

Applying equations (29) and (33), we can see that

gαβλi,αβ =
(n + 3)

n(n − 1)
Rλi. (47)

Taking this into account, we obtain

Δφ =
2(n + 3)

n(n − 1)
Rλαλα + 2λα,βλ

αβ
.,. . (48)

Since the matrix form Vn is positive definite and R > 0, then Δφ ≥ 0. Hopf-Bochner theorem implies that φ = const,
and Δφ = 0. Applying the lemma 1. we can see that the theorem is proven.

CONCLUSIONS

We defined a form of a system of basic equations for geodesic mappings of quasi-Einstein spaces. The developed
methods of research can be applied in the theory of conformal mappings [4] and in the theory of holomorphically
projective mappings of Kählerian spaces [5, 8]. A further research is needed in order to shed new light on the pseudo-
Riemannian spaces that result from geodesic mapping of a quasi-Einstein space.
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