UDC 511.7

М.В. Працьовитий

О.В. Котова

Про фрактальні властивості деяких множин канторівського типу, пов'язаних з Q-зображенням дійсних чисел

Наводяться результати дослідження тополого-метричних i фрактальних властивостей множин дійсних чисел з обмеженнями на вживання символів в ix Q-зображенні (узагальненн,я s-адичних розкладів)

E-mail: Olga-Kotova@ukr.net
Contributed by Prof. Dr. M.V. Pratsiovytyi

1 Introduction

Definition 1.1. Let $\triangle_{c_{1} \ldots c_{k} \ldots}^{3}$ be a formal (symbolic) representation of number $x \in[0,1]$ in ternary numeration system, $c_{i}=c_{i}(x) \in\{0,1,2\}$, i.e.,

$$
x \equiv \triangle_{c_{1} \ldots c_{k} \ldots}^{3}=\sum_{m=1}^{\infty} 3^{-m} c_{m} .
$$

Let $N_{i}(x, n)=\#\left\{k: c_{k}(x)=i, k \leqslant n\right\}$ be a number of digits " i " in ternary expansion of number x to n-th position inclusive, $i=0,1,2$. If limit $\lim _{n \rightarrow \infty} n^{-1} N_{i}(x, n)=\nu_{i}(x)$ exists, then value $\nu_{i}(x)$ is called the frequency (or asymptotic frequency) of digit " i " in ternary representation of x.

In paper [?], the continuum set of fixed points of mapping $y=\nu_{1}^{3}(x)$ where $\nu_{1}^{3}(x)$ is a function of frequency of digit 1 in ternary representation of x is described. The points of this set have the following properties:

1. Every fifth ternary digit can be chosen arbitrarily.
2. Other digits are obtained by algorithm and depend on all previous ternary digits of x.

The Hausdorff-Besicovitch dimension of this set is found in paper [?].

This motivates our interest in the problem about fractal properties of the set $M \subset[0,1]$ consisting of the numbers such that their Q-representations (generalization of s-adic expansion) have similar structural properties. Namely, we study the set M with the following properties:

M.V. Pratsiovytyi
O.V. Kotova

On fractal properties of some Cantor-like sets related to Q-representation of real numbers

In the paper, we study topological, metric and fractal properties of the sets of numbers with conditions on use of digits in their Q-representation (generalization of s-adic expansions)

1. Every l-th $(1<l \in N) Q$-symbol of $x \in M$ is arbitrary.
2. Q-symbol with number $n \notin\{1+k l\}$, $k=0,1,2, \ldots$ is determined uniquely and depend on all previous Q-symbols.

Does dependence of n-th Q-symbol of $x \in M$ on previous Q-symbols influence the HausdorffBesicovitch dimension of the set M ? It is easy to prove that it does not influence if Q-representation is at least an s-adic representation. Our paper is devoted to these and some other problems.

$2 s$-symbol Q-representation of real number

Let s be a fixed positive integer, $s>1$, let $A=\{0,1, \ldots, s-1\}$, and let $Q=\left\{q_{0}, q_{1}, \ldots, q_{s-1}\right\}$ be a fixed set with the following properties:

$$
\begin{cases}\text { 1) } & q_{i}>0 \tag{1}\\ \text { 2) } & q_{0}+q_{1}+\ldots+q_{s-1}=1\end{cases}
$$

$\beta_{0}=0, \beta_{j}=q_{0}+q_{1}+\ldots+q_{j-1}$.
Theorem 2.1 ([?, p. 87]). For any number $x \in$ $[0,1]$ there exists a sequence of numbers $\alpha_{k} \in A$ such that

$$
\begin{equation*}
x=\beta_{\alpha_{1}}+\sum_{k=2}^{\infty}\left[\beta_{\alpha_{k}} \prod_{j=1}^{k-1} q_{\alpha_{j}}\right] . \tag{2}
\end{equation*}
$$

For any real number u there exists an expansion

$$
\begin{equation*}
u=[u]+\beta_{\alpha_{1}(u)}+\sum_{k=2}^{\infty}\left[\beta_{\alpha_{k}(u)} \prod_{j=1}^{k-1} q_{\alpha_{j}(u)}\right] \tag{3}
\end{equation*}
$$

where $[u]$ is a floor function of u.
Definition 2.1. Representation of the number x (number u) by the series (??) (series (??)) is called the s-symbol Q-expansion.

We denote symbolically expression (??) by $\triangle_{\alpha_{1} \ldots \alpha_{k} \ldots}^{Q}$ and call it by s-symbol Q-representation of x. The number $\alpha_{k}(x)$ is called the k-th Q symbol of x.

Remark 1. If $q_{i}=s^{-1}, i=\overline{0, s-1}$, then Q-expansion is an s-adic expansion and Q-representation is a representation of number in numeration system with base s.

Theorem 2.2 ([?]). Any number $x \in[0,1]$ have no more than two formally different Q-representations. There exist numbers with two different Q-representations, one has period (0), other has period $(s-1)$.

Definition 2.2. Numbers having period 0 in their Q-representations are called the Q-rational, the rest are the Q-irrational.

Any Q-rational number has two different Q-representations, and any Q-irrational number has a unique Q-representation.

The set of all Q-rational numbers is a countable set.

Remark 2. The notion of Q-symbol is well defined for Q-irrational number and is not well defined for Q-rational number. Therefore, we shall give more information in the sequel to avoid ambiguity.

3 Function of frequency of digits of Q-representation

Let $N_{i}(x, k)$ be a number of symbols " i " in Q-representation of number x to k-th position inclusive. Then limit (if it exists)

$$
\lim _{k \rightarrow \infty} k^{-1} N_{i}(x, k)=\nu_{i}(x)
$$

is called the frequency of symbol " i " in Q-representation of x.

It is evident that the frequency of Q-symbol does not depend on arbitrary finite amount of symbols of this number.

For Q-rational numbers, the frequency of symbol 0 (or $s-1$) is equal to 1 , and the frequencies of the rest symbols are equal to 0 .

For any fixed i, function $f(x)=\nu_{i}(x)=u$ is an everywhere discontinuous function. Moreover, this function takes any value from $[0,1]$ on the continuum set. Furthermore,

$$
E_{u}=\left\{x: \nu_{i}(x)=u\right\}
$$

is a dense set in $[0,1]$, and its HausdorffBesicovitch dimension is equal to

$$
\alpha_{0}\left(E_{u}\right)=\sup _{\left(\tau_{0} \tau_{1} \ldots \tau_{s-1}\right)} \frac{\ln \tau_{0}^{\tau_{0}} \tau_{1}^{\tau_{1}} \ldots \tau_{s-1}^{\tau_{s-1}}}{\ln q_{0}^{\tau_{0}} q_{1}^{\tau_{1}} \ldots q_{s-1}^{\tau_{s-1}}}
$$

where $\tau_{k}>0, \tau_{i}=u, \tau_{0}+\tau_{1}+\ldots+\tau_{s-1}=1$.
The property W of elements of the set M is called a normal property if almost all elements of M have this property. There exist a few mathematical notions allowing to interpret uniquely words "almost all". The notions of cardinality, measure, Hausdorff-Besicovitch dimension, Baire category are among them. We use the notion of measure of set (Lebesgue measure).

Definition 3.1. The number $x=\triangle_{\alpha_{1} \ldots \alpha_{k} \ldots}^{Q}$ such that the frequency $\nu_{i}(x)$ of Q-symbol i satisfies the condition

$$
\nu_{i}(x)=q_{i} \quad \forall i \in\{0,1, \ldots, s-1\}
$$

is called a Q-normal number.

From the following proposition it follows that this definition is well defined.

Theorem 3.1. The Lebesgue measure of all Q-normal numbers from $[0,1]$ is equal to 1 .

Theorem 3.2. Almost all numbers from $[0,1]$ are normal in any Q-representation with rational $q_{0}, q_{1}, \ldots, q_{s-1}$.

Definition 3.2. The number $x \in[0,1]$ is called a non-normal in Q-representation if x does not have frequency for at least one Q-symbol.

Theorem 3.3. The set $V \subset[0,1]$ of non-normal in Q-representation numbers is a superfractal, i.e., it is a continuum set, and its HausdorffBesicovitch dimension is equal to 1 .

4 Transition from s-symbol Q-representation to adjusted s^{l}-symbol \bar{Q}-representation

Let l be a fixed positive integer, $l>1$, and let $\left(a_{1}, a_{2}, \ldots, a_{l}\right) \in A^{l}$.

Define a simple function
$k=\varphi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l}\right)=\alpha_{1} s^{l-1}+\alpha_{2} s^{l-2}+\ldots+\alpha_{l}$
and put $\bar{q}_{k}=\prod_{j=1}^{l} q_{\alpha_{j}}$.
Lemma 1. If the set $Q=\left\{q_{0}, \ldots, q_{s-1}\right\}$ satisfies conditions (??), then the set $\bar{Q}=\left\{\overline{q_{0}}, \ldots, \overline{q_{m}}\right\}$, $m=s^{l}-1$, also satisfies conditions (??).

Proof. Let $\left(\alpha_{1} \ldots \alpha_{l}\right)_{s}$ be an s-adic representation of number $k \in N \cup\{0\}$, i.e.,

$$
k=\alpha_{1} s^{l-1}+\alpha_{2} s^{l-2}+\ldots+\alpha_{l}=\left(\alpha_{1} \ldots \alpha_{l}\right)_{s}
$$

Let $\alpha_{1} \ldots \alpha_{l}=\bar{k}$, namely,

$$
\begin{aligned}
& \underbrace{0 \ldots 00}_{l}=\overline{0}, \\
& \underbrace{0 \ldots 01}_{l}=\overline{1},
\end{aligned}
$$

$$
\underbrace{(s-1) \ldots(s-1)}_{l}=\bar{m}
$$

$$
\begin{aligned}
& ((s-1) \ldots(s-1)(s-1))_{s}= \\
& \frac{s-1}{1-s}\left(1-s^{l}\right)=s^{l}-1=m
\end{aligned}
$$

Divide all infinite sequence of Q-symbols of x into blocks consisting of l symbols. Then Q-representation of x can be rewritten formally by infinite ordered set of symbols from the set $\{\overline{0}, \overline{1}, \ldots, \bar{m}\}$. Namely,

$$
x=\Delta_{\alpha_{1} \ldots \alpha_{k} \ldots}^{Q}=\Delta_{k_{1} \ldots k_{n} \ldots}^{\bar{Q}}
$$

where $k_{1} \equiv\left(\alpha_{1} \ldots \alpha_{l}\right)_{s}, \ldots$,
$k_{n+1} \equiv\left(\alpha_{1+n l+1} \ldots \alpha_{l+n l+l}\right)_{s}$,
$k_{1}=\alpha_{1} s^{l-1}+\alpha_{2} s^{l-2}+\ldots+\alpha_{l}$.
$\bar{Q}=\left\{\bar{q}_{0}, \bar{q}_{1}, \ldots, \bar{q}_{m}\right\}$, where
$k_{1}=\alpha_{1} s^{l-1}+\alpha_{2} s^{l-2}+\ldots+\alpha_{l}$.
$\bar{q}_{k}=\prod_{j=1}^{l} q_{\alpha_{j}}$.
It is evident that $\left\{\begin{array}{l}\bar{q}_{k}>0, \\ \sum_{k=0}^{m} \bar{q}_{k}=1 .\end{array}\right.$

Remark 3. If we have the set Q satisfying (??), by algorithm from Lemma 1, we can construct the new set \bar{Q} satisfying conditions (??). This set defines new representation adjusted with Q-representation of $x \in[0,1]$.

Let

$\varphi\left(x_{1}, x_{2}, \ldots, x_{l}\right)=x_{1} s^{l-1}+x_{2} s^{l-2}+\ldots+x_{l-1} s+x_{l}$.
Theorem 4.1. For any $x \in[0,1]$ the equality holds:

$$
\begin{equation*}
x \equiv \Delta_{\alpha_{1} \ldots \alpha_{n} \ldots}^{Q}=\Delta_{k_{1} \ldots k_{n \ldots}}^{\bar{Q}} \tag{4}
\end{equation*}
$$

where $k_{i}=\varphi\left(\alpha_{l(i-1)+1}, \alpha_{l(i-1)+2}, \ldots, \alpha_{l i}\right)$ for any $i=1,2, \ldots$.

Proof. In fact, α_{i} takes values from the set A. Then functional φ of l variables takes s^{l} different values from the set \bar{A},

$$
\begin{array}{r}
\bar{A}=\{0=\varphi(0, \ldots, 0), 1=\varphi(0, \ldots, 0,1), \ldots \\
\left.s^{l}-1=\varphi(s-1, \ldots, s-1)\right\}
\end{array}
$$

To conclude the proof it is enough to show the equality of cylinders

$$
\triangle_{\alpha_{1} \ldots \alpha_{l m}}^{Q}=\triangle_{k_{1} \ldots k_{m}}^{\bar{Q}}
$$

for any $m \in N$ and sequence $\left(\alpha_{1}, \ldots, \alpha_{l m}\right)$ where k_{i} are given by formulae (??).

Using Lemma 1, we get

$$
\left|\triangle_{k_{1} \ldots k_{m}}^{\bar{Q}}\right|=\prod_{j=1}^{m} \bar{q}_{k_{j}}=\prod_{i=1}^{l m} q_{\alpha_{i}}=\left|\triangle_{\alpha_{1} \ldots \alpha_{l m}}^{Q}\right|
$$

It remains to prove that

$$
\inf \triangle_{k_{1} \ldots k_{m}}^{\bar{Q}}=\inf \triangle_{\alpha_{1} \ldots \alpha_{l m}}^{Q}
$$

Indeed,

$$
\begin{gathered}
\inf \triangle_{k_{1} \ldots k_{m}}^{\bar{Q}}=\triangle_{k_{1} \ldots k_{m}(0)}^{\bar{Q}}= \\
=\bar{\beta}_{k_{1}}+\sum_{n=2}^{m}\left[\bar{\beta}_{k_{n}} \prod_{j=1}^{n-1} \bar{q}_{k_{j}}\right]= \\
=\beta_{\alpha_{1}}+\sum_{n=2}^{l m}\left[\beta_{\alpha_{n}} \prod_{j=1}^{n-1} q_{\alpha_{j}}\right]=\inf \triangle_{\alpha_{1} \ldots \alpha_{l m}}^{Q}
\end{gathered}
$$

which proves the theorem.

5 Fractal properties of some Cantor-like sets related to Q-representation of real numbers

1. The set M.

Consider two positive integers $s>1, l>1$ and a sequence of matrices

$$
\left\|\mathbf{c}_{\mathbf{i} \mathbf{j}}^{\mathbf{n}}\right\|=\left(\begin{array}{cccc}
c_{01}^{n} & c_{02}^{n} & \cdots & c_{0(l-1)}^{n} \\
c_{11}^{n} & c_{12}^{n} & \cdots & c_{1(l-1)}^{n} \\
\cdots & \cdots & \cdots & \cdots \\
c_{(s-1) 1}^{n} & c_{(s-1) 2}^{n} & \cdots & c_{(s-1)(l-1)}^{n}
\end{array}\right)
$$

where $n=1,2, \ldots, c_{i j}^{n} \in A=\{0,1, \ldots, s-1\}$.
Theorem 5.1. If the sequence $\left(\left\|c_{i j}^{n}\right\|\right)_{n=1}^{\infty}$ is a purely periodic with period

$$
\left(\left\|c_{i j}^{n_{1}+1}\right\|, \ldots,\left\|c_{i j}^{n_{1}+2}\right\|,\left\|c_{i j}^{n_{1}+p}\right\|\right)
$$

then Hausdorff-Besicovitch dimension of the set

$$
\begin{gathered}
M=\left\{x: x=\triangle_{\alpha_{1} \ldots \alpha_{k} \ldots .}^{Q}, \alpha_{1+(n-1) l}(x) \in A\right. \\
\\
\left.\alpha_{1+(n-1) l+j}=c_{\alpha_{1+(n-1) l}}^{n}, j=\overline{1, l-1}\right\}
\end{gathered}
$$

is a root of the equation

$$
\sum_{i_{1}=0}^{s-1} \ldots \sum_{i_{p}=0}^{s-1}\left(\prod_{k=1}^{p}\left[q_{i_{k}} \prod_{j=1}^{l-1} q_{c_{i_{k} j}^{k}}\right]\right)^{x}=1
$$

or

$$
\begin{equation*}
\prod_{k=1}^{p} \sum_{i=0}^{s-1} q_{i}^{x} \prod_{j=1}^{l-1} q_{c_{i j}^{k}}^{x}=1 \tag{5}
\end{equation*}
$$

Proof. M is a self-similar set, since for any sequence $\left(i_{1}, c_{i_{1} 0}^{1}, \ldots, c_{i_{1} l}^{1}, \ldots, i_{p} c_{i_{p} 0}^{p}, \ldots, c_{i_{p} l}^{p}\right)$ and corresponding cylinder $\triangle_{i_{1} c_{i_{1} 0}^{1} \ldots c_{i_{1} l}^{1} \ldots i_{p} c_{i_{p} 0}^{p} \ldots c_{i_{p} l}^{p}}$ the set M is similar to the part of M belonging to this cylinder, namely,

$$
M \stackrel{k}{\sim}\left[M \cap \triangle_{i_{1} c_{i_{1} 0}^{1} \ldots c_{i_{1} l}^{1} \ldots i_{p} c_{i_{p} 0}^{p} \ldots c_{i_{p l} l}^{p}}\right]
$$

where similarity ratio is given by formula

$$
k=\prod_{k=1}^{p}\left(q_{i_{k}} \prod_{j=1}^{l-1} q_{c_{i j}^{k}}\right)
$$

Since M is a perfect set (i.e., a closed set without isolated points), self-similar dimension of M coincides with Hausdorff-Besicovitch dimension of M and is a root of equation (??).

Remark 4. If the sequence of matrices $\left(\left\|c_{i j}^{n}\right\|\right)_{n=1}^{\infty}$ is periodic but period starts from position $n_{1}+1$, then the theorem remains valid. Then M is not a self-similar set but is a finite union of self-similar sets with the same structure of similarity.

Corollary 5.1. If all matrices of sequence $\left(\left\|c_{i j}^{n}\right\|\right)_{n=1}^{\infty}$ are identical, i.e., $c_{i j}^{n}=c_{i j}$, then the Hausdorff-Besicovitch dimension of M is a root of the equation

$$
\sum_{i=0}^{s-1}\left[q_{i} \prod_{j=1}^{l-1} q_{c_{i j}}\right]^{x}=1
$$

Corollary 5.2. If

$$
\left(c_{i 1} \ldots c_{i(l-1)}\right)=\left(c_{01} \ldots c_{0(l-1)}\right), \quad i=\overline{0, s-1}
$$

then the Hausdorff-Besicovitch dimension of M is a root of the equation

$$
\left(q_{0}^{x}+\ldots+q_{s-1}^{x}\right) \prod_{j=1}^{l-1} q_{c_{0 j}}^{x}=1
$$

Corollary 5.3. If $q_{i}=\frac{1}{s}, i=\overline{0, s-1}$, then the Hausdorff-Besicovitch dimension of the set

$$
\begin{aligned}
& M=\left\{x: x=\triangle_{\alpha_{1} \ldots \alpha_{k} \ldots}^{s}, \alpha_{1+(n-1) l}(x) \in A\right. \\
& \left.\alpha_{1+(n-1) l+j}=\text { const }_{1+(n-1) l+j}, j=\overline{1, l-1}\right\}
\end{aligned}
$$

is equal to $\frac{1}{l}$.

2. The set O.

Let $\left(m_{n}\right)$ be an increasing sequence of positive integers such that $m_{n+1}-m_{n} \geqslant 2,\left(c_{n}, c_{n}^{\prime}\right) \in A^{2}$, $n=1,2, \ldots$

Theorem 5.2. The set

$$
\begin{aligned}
O=\{x: & x=\triangle_{\alpha_{1} \ldots \alpha_{k} \ldots}^{Q} \\
& \left.\left(\alpha_{m_{n}}(x), \alpha_{m_{n}+1}(x)\right) \neq\left(c_{n}, c_{n+1}^{\prime}\right)\right\}
\end{aligned}
$$

is a nowhere dense perfect set of zero Lebesgue measure.

Proof. 1. For any subinterval (a, b) from $[0,1]$ there exists cylinder $\nabla_{\alpha_{1} \alpha_{2} \ldots \alpha_{k}}$ of some rank k such that it is contained in (a, b). Then for $m_{n}>k$,

$$
\nabla_{\alpha_{1} \alpha_{2} \ldots \alpha_{k} \ldots \alpha_{m_{n}-1} c_{m_{n}} c_{m_{n}+1}} \cap O=\varnothing
$$

Hence, the set O is a nowhere dense set by definition.

The set O is perfect according to theorem about structure of perfect sets of real numbers [?].
2. Suppose $F_{0}=[0,1], F_{k}$ is a union of cylinders of rank k for Q-representation such that interior points contains points of the set O, and

$$
\bar{F}_{k+1}=F_{k} \backslash F_{k+1}
$$

Then $\lambda\left(F_{k+1}\right)=\lambda\left(F_{k}\right)-\lambda\left(\bar{F}_{k+1}\right), O \subset F_{k+1} \subset F_{k}$ $\forall k \in N$ and $\lambda(O) \leqslant \lambda\left(F_{k+1}\right) \rightarrow \lambda(O) \quad(n \rightarrow \infty)$.

Since

$$
\lambda\left(F_{k+1}\right)=\frac{\lambda\left(F_{k+1}\right)}{\lambda\left(F_{k}\right)} \cdot \frac{\lambda\left(F_{k}\right)}{\lambda\left(F_{k-1}\right)} \cdot \ldots \cdot \frac{\lambda\left(F_{1}\right)}{\lambda\left(F_{0}\right)}
$$

it follows that

$$
\begin{gathered}
\lambda(O)=\lim _{n \rightarrow \infty} \lambda\left(F_{k+1}\right)=\lim _{n \rightarrow \infty} \prod_{k=1}^{m} \frac{\lambda\left(F_{k}\right)}{\lambda\left(F_{k-1}\right)}= \\
=\prod_{k=1}^{\infty} \frac{\lambda\left(F_{k}\right)}{\lambda\left(F_{k-1}\right)}=\prod_{k=1}^{\infty}\left[1-\frac{\lambda\left(\bar{F}_{k}\right)}{\lambda\left(F_{k-1}\right)}\right]
\end{gathered}
$$

Since $\frac{\lambda\left(\bar{F}_{k+1}\right)}{\lambda\left(F_{k}\right)} \geqslant q_{\text {min }}^{2}>0$, the series $\sum_{k=1}^{\infty} \frac{\lambda\left(\bar{F}_{k}\right)}{\lambda\left(F_{k-1}\right)}$ is divergent, and the last infinite product does so. Thus $\lambda(O)=0$.

References

1. Albeverio S., Pratsiovytyi M., Torbin G. Topological and fractal properties of real numbers which are not normal // Bull. Sci. Math. - 2005. - 129, no. 8. - P. 615-630.
2. Albeverio S., Pratsiovytyi M., Torbin G. Singular probability distributions and fractal properties of sets of real numbers defined by the asymptotic frequencies of their s-adic digits // Ukrainian Math. J. - 2005. - 57, no. 9. - P. 1163-1170.
3. Besicovitch A.S. On the sum of digits of real numbers represented in the dyadic number system // Math. Ann. Soc. - 1934. - 110, P. 321-330.
4. Eggleston H.G. The fractional dimension of a set defined by decimal properties // Quart. J. Math. Soc. - 1949. - 20. - P. 31-36.
5. Eggleston H.G. Sets of fractional dimensions which occur in some problems of number theory // Proc. London Math. Soc. - 1951. 54. - P. 42-93.
6. Olsen L. Applications of multifractal divergence points to sets of numbers defined by their N-adic expansion // Math. Proc. Cambridge Philos. Soc. -2004 . -136 , no. 1. P. 139-165.
7. Kotova O.V. Some properties of function of frequency of digit 1 in ternary expansion of real number // Trans. Drahomanov National Pedagogical Univ. Ser. 1, Phys. Math. - Kyiv: Drahomanov National Pedagogical Univ., 2005. - no. 6. - P. 255-260.
8. Kotova O.V. Continuum cardinality of the set of solutions of one class of equations that contain the function of frequency of ternary digits of a number // Ukrainian Math. J. - 2008. 60, no. 10. - P. 1414-1421.
9. Kotova $O . V$. Fractality of the set of solutions of one class of equations that contain the function of frequency of ternary digits of a number // Trans. Drahomanov National Pedagogical Univ. Ser. 1, Phys. Math. - Kyiv: Drahomanov National Pedagogical Univ., 2006. no. 7. - P. 152-159.
10. Natanson I.P. Theory of functions of a real variable. - Moscow: Nauka, 1974. - 480 p.
11. Pratsiovytyi M.V., Torbin G.M. Superfractality of the set of numbers having no frequency of n-adic digits and fractal probability distributions // Ukrainian Math. J. - 1995. - 47, no. 7. - P. 971-975.
12. Pratsiovytyi M.V. Fractal approach to investigations of singular probability distributions. - Kyiv: Drahomanov National Pedagogical Univ., 1998. - 296 p.
13. Torbin G.M. Frequency characteristics of normal numbers in different numeration systems // Fractal analysis and related questions. - Kyiv: Inst. Math. NAN Ukraine Drahomanov National Pedagogical Univ., 1998. - no. 1. - P. 53-55.
14. Turbin A.F., Pratsiovytyi M.V. Fractal sets, functions, distributions. - Kyiv: Naukova Dumka, 1992. - 208 p.

Received

