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1 Introduction

De�nition 1.1. Let 43
c1...ck...

be a formal (sym-
bolic) representation of number x ∈ [0, 1] in
ternary numeration system, ci = ci (x) ∈ {0, 1, 2},
i.e.,

x ≡ 43
c1...ck...

=
∞∑
m=1

3−mcm.

Let Ni (x, n) = # {k : ck (x) = i, k 6 n} be a
number of digits �i� in ternary expansion of num-
ber x to n-th position inclusive, i = 0, 1, 2. If limit
lim
n→∞

n−1Ni (x, n) = νi(x) exists, then value νi(x)

is called the frequency (or asymptotic frequency)

of digit �i� in ternary representation of x.

In paper [?], the continuum set of �xed points
of mapping y = ν31(x) where ν31(x) is a function
of frequency of digit 1 in ternary representation
of x is described. The points of this set have the
following properties:

1. Every �fth ternary digit can be chosen ar-
bitrarily.

2. Other digits are obtained by algorithm and
depend on all previous ternary digits of x.

The Hausdor�-Besicovitch dimension of this
set is found in paper [?].

This motivates our interest in the problem
about fractal properties of the set M ⊂ [0, 1] con-
sisting of the numbers such that their Q-represen-
tations (generalization of s-adic expansion) have
similar structural properties. Namely, we study
the set M with the following properties:

1. Every l-th (1 < l ∈ N) Q-symbol of x ∈M
is arbitrary.

2. Q-symbol with number n /∈ {1 + kl},
k = 0, 1, 2, . . . is determined uniquely and depend
on all previous Q-symbols.

Does dependence of n-th Q-symbol of x ∈ M
on previous Q-symbols in�uence the Hausdor�-
Besicovitch dimension of the set M? It is easy to
prove that it does not in�uence if Q-representation
is at least an s-adic representation. Our paper is
devoted to these and some other problems.

2 s-symbol Q-representation of real num-

ber

Let s be a �xed positive integer, s > 1, let
A = {0, 1, . . . , s−1}, and letQ = {q0, q1, . . . , qs−1}
be a �xed set with the following properties:{

1) qi > 0;
2) q0 + q1 + . . .+ qs−1 = 1 ,

(1)

β0 = 0, βj = q0 + q1 + . . .+ qj−1.

Theorem 2.1 ([?, p. 87]). For any number x ∈
[0, 1] there exists a sequence of numbers αk ∈ A
such that

x = βα1 +

∞∑
k=2

βαk

k−1∏
j=1

qαj

 . (2)

For any real number u there exists an expan-

sion

u = [u] + βα1(u) +
∞∑
k=2

βαk(u)

k−1∏
j=1

qαj(u)

 (3)
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where [u] is a �oor function of u.

De�nition 2.1. Representation of the number x
(number u) by the series (??) (series (??)) is called
the s-symbol Q-expansion.

We denote symbolically expression (??) by
4Q
α1...αk... and call it by s�symbol Q-representation

of x. The number αk(x) is called the k-th Q-
symbol of x.

Remark 1. If qi = s−1, i = 0, s− 1, then Q-ex-
pansion is an s-adic expansion and Q-representa-
tion is a representation of number in numeration

system with base s.

Theorem 2.2 ([?]). Any number x ∈ [0, 1] have
no more than two formally di�erent Q-represen-
tations. There exist numbers with two di�erent

Q-representations, one has period (0), other has

period (s− 1).

De�nition 2.2. Numbers having period 0 in their
Q-representations are called the Q-rational, the
rest are the Q-irrational.

Any Q-rational number has two di�erent
Q-representations, and any Q-irrational number
has a unique Q-representation.

The set of all Q-rational numbers is a count-
able set.

Remark 2. The notion of Q-symbol is well de-

�ned for Q-irrational number and is not well de-

�ned for Q-rational number. Therefore, we shall

give more information in the sequel to avoid am-

biguity.

3 Function of frequency of digits of Q-rep-
resentation

Let Ni (x, k) be a number of symbols �i� in Q-rep-
resentation of number x to k-th position inclusive.
Then limit (if it exists)

lim
k→∞

k−1Ni (x, k) = νi(x)

is called the frequency of symbol �i� in Q-repre-
sentation of x.

It is evident that the frequency of Q-symbol
does not depend on arbitrary �nite amount of sym-
bols of this number.

ForQ-rational numbers, the frequency of sym-
bol 0 (or s − 1) is equal to 1, and the frequencies
of the rest symbols are equal to 0.

For any �xed i, function f(x) = νi(x) = u
is an everywhere discontinuous function. More-
over, this function takes any value from [0, 1] on
the continuum set. Furthermore,

Eu = {x : νi(x) = u}

is a dense set in [0, 1], and its Hausdor�-
Besicovitch dimension is equal to

α0(Eu) = sup
(τ0τ1...τs−1)

ln τ τ00 τ
τ1
1 . . . τ

τs−1

s−1
ln qτ00 q

τ1
1 . . . q

τs−1

s−1

where τk > 0, τi = u, τ0 + τ1 + . . .+ τs−1 = 1.

The property W of elements of the set M is
called a normal property if almost all elements of
M have this property. There exist a few math-
ematical notions allowing to interpret uniquely
words �almost all�. The notions of cardinality,
measure, Hausdor�-Besicovitch dimension, Baire
category are among them. We use the notion of
measure of set (Lebesgue measure).

De�nition 3.1. The number x = 4Q
α1...αk... such

that the frequency νi(x) of Q-symbol i satis�es
the condition

νi(x) = qi ∀i ∈ {0, 1, . . . , s− 1}

is called a Q-normal number.

From the following proposition it follows that
this de�nition is well de�ned.

Theorem 3.1. The Lebesgue measure of all

Q-normal numbers from [0, 1] is equal to 1.

Theorem 3.2. Almost all numbers from [0, 1]
are normal in any Q-representation with rational

q0, q1, . . . , qs−1.

De�nition 3.2. The number x ∈ [0, 1] is called a
non-normal in Q-representation if x does not have
frequency for at least one Q-symbol.

Theorem 3.3. The set V ⊂ [0, 1] of non-normal

in Q-representation numbers is a superfractal,

i.e., it is a continuum set, and its Hausdor�-

Besicovitch dimension is equal to 1.
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4 Transition from s-symbol Q-representa-
tion to adjusted sl-symbol Q-representa-
tion

Let l be a �xed positive integer, l > 1, and let
(a1, a2, . . . , al) ∈ Al.

De�ne a simple function

k = ϕ(α1, α2, . . . , αl) = α1s
l−1 +α2s

l−2 + . . .+αl

and put qk =
l∏

j=1
qαj .

Lemma 1. If the set Q = {q0, . . . , qs−1} satis�es
conditions (??), then the set Q = {q0, . . . , qm},
m = sl − 1, also satis�es conditions (??).

Proof. Let (α1 . . . αl)s be an s-adic representation
of number k ∈ N ∪ {0}, i.e.,

k = α1s
l−1 + α2s

l−2 + . . .+ αl = (α1 . . . αl)s.

Let α1 . . . αl = k, namely,

0 . . . 00︸ ︷︷ ︸
l

= 0,

0 . . . 01︸ ︷︷ ︸
l

= 1,

. . . . . . . . . . . .

(s− 1) . . . (s− 1)︸ ︷︷ ︸
l

= m,

((s− 1) . . . (s− 1)(s− 1))s =

s− 1

1− s

(
1− sl

)
= sl − 1 = m.

Divide all in�nite sequence of Q-symbols of
x into blocks consisting of l symbols. Then
Q-representation of x can be rewritten formally
by in�nite ordered set of symbols from the set
{0, 1, . . . ,m}. Namely,

x = ∆Q
α1...αk...

= ∆Q
k1...kn...

where k1 ≡ (α1 . . . αl)s, . . .,
kn+1 ≡ (α1+nl+1 . . . αl+nl+l)s,
k1 = α1s

l−1 + α2s
l−2 + . . .+ αl.

Q = {q0, q1, . . . , qm}, where
k1 = α1s

l−1 + α2s
l−2 + . . .+ αl.

qk =
l∏

j=1
qαj .

It is evident that

 qk > 0,
m∑
k=0

qk = 1.

Remark 3. If we have the set Q satisfying (??),
by algorithm from Lemma 1, we can construct the

new set Q satisfying conditions (??). This set de-
�nes new representation adjusted with Q-represen-
tation of x ∈ [0, 1].

Let

ϕ(x1, x2, . . . , xl) = x1s
l−1+x2s

l−2+. . .+xl−1s+xl.

Theorem 4.1. For any x ∈ [0, 1] the equality

holds:

x ≡ ∆Q
α1...αn... = ∆Q

k1...kn...
(4)

where ki = ϕ(αl(i−1)+1, αl(i−1)+2, . . . , αli) for any

i = 1, 2, . . ..

Proof. In fact, αi takes values from the set A.
Then functional ϕ of l variables takes sl di�erent
values from the set A,

A =
{

0 = ϕ(0, . . . , 0), 1 = ϕ(0, . . . , 0, 1), . . . ,

sl − 1 = ϕ(s− 1, . . . , s− 1)
}
.

To conclude the proof it is enough to show the
equality of cylinders

4Q
α1...αlm

= 4Q
k1...km

for any m ∈ N and sequence (α1, . . . , αlm) where
ki are given by formulae (??).

Using Lemma 1, we get

|4Q
k1...km

| =
m∏
j=1

qkj =
lm∏
i=1

qαi = |4Q
α1...αlm

|.

It remains to prove that

inf4Q
k1...km

= inf4Q
α1...αlm

.

Indeed,

inf4Q
k1...km

= 4Q
k1...km(0) =

= βk1 +
m∑
n=2

βkn n−1∏
j=1

qkj

 =

= βα1 +

lm∑
n=2

βαn

n−1∏
j=1

qαj

 = inf4Q
α1...αlm

,

which proves the theorem.
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5 Fractal properties of some Cantor-like

sets related to Q-representation of real

numbers

1. The set M .

Consider two positive integers s > 1, l > 1
and a sequence of matrices

∥∥cnij∥∥ =


cn01 cn02 . . . cn0(l−1)
cn11 cn12 . . . cn1(l−1)
. . . . . . . . . . . .

cn(s−1)1 cn(s−1)2 . . . cn(s−1)(l−1)


where n = 1, 2, . . ., cnij ∈ A = {0, 1, . . . , s− 1}.

Theorem 5.1. If the sequence
(
||cnij ||

)∞
n=1

is a

purely periodic with period(
||cn1+1
ij ||, . . . , ||cn1+2

ij ||, ||cn1+p
ij ||

)
,

then Hausdor�-Besicovitch dimension of the set

M =
{
x : x = 4Q

α1...αk...
, α1+(n−1)l(x) ∈ A,

α1+(n−1)l+j = cnα1+(n−1)lj
, j = 1, l − 1

}
is a root of the equation

s−1∑
i1=0

. . .
s−1∑
ip=0

 p∏
k=1

qik l−1∏
j=1

qckikj

x

= 1

or
p∏

k=1

s−1∑
i=0

qxi

l−1∏
j=1

qx
ckij

= 1. (5)

Proof. M is a self-similar set, since for any
sequence (i1, c

1
i10
, . . . , c1i1l, . . . , ipc

p
ip0
, . . . , cpipl) and

corresponding cylinder 4
i1c1i10

...c1i1l
...ipc

p
ip0

...cpipl
the

set M is similar to the part of M belonging to
this cylinder, namely,

M
k∼
[
M ∩4i1c1i10

...c1i1l
...ipc

p
ip0

...cpipl

]
where similarity ratio is given by formula

k =

p∏
k=1

qik l−1∏
j=1

qckij

 .

SinceM is a perfect set (i.e., a closed set with-
out isolated points), self-similar dimension of M
coincides with Hausdor�-Besicovitch dimension of
M and is a root of equation (??).

Remark 4. If the sequence of matrices(
||cnij ||

)∞
n=1

is periodic but period starts from po-

sition n1 + 1, then the theorem remains valid.

Then M is not a self-similar set but is a �nite

union of self-similar sets with the same structure

of similarity.

Corollary 5.1. If all matrices of sequence(
||cnij ||

)∞
n=1

are identical, i.e., cnij = cij, then the

Hausdor�-Besicovitch dimension of M is a root of

the equation

s−1∑
i=0

qi l−1∏
j=1

qcij

x = 1.

Corollary 5.2. If

(ci1 . . . ci(l−1)) = (c01 . . . c0(l−1)), i = 0, s− 1,

then the Hausdor�-Besicovitch dimension of M is

a root of the equation

(qx0 + . . .+ qxs−1)
l−1∏
j=1

qxc0j = 1.

Corollary 5.3. If qi =
1

s
, i = 0, s− 1, then the

Hausdor�-Besicovitch dimension of the set

M =
{
x : x = 4s

α1...αk...
, α1+(n−1)l(x) ∈ A,

α1+(n−1)l+j = const1+(n−1)l+j , j = 1, l − 1
}

is equal to
1

l
.

2. The set O.
Let (mn) be an increasing sequence of positive

integers such that mn+1 −mn > 2, (cn, c
′
n) ∈ A2,

n = 1, 2, . . ..

Theorem 5.2. The set

O =
{
x : x = 4Q

α1...αk...
,

(αmn(x), αmn+1(x)) 6= (cn, c
′
n+1)

}
is a nowhere dense perfect set of zero Lebesgue

measure.

Proof. 1. For any subinterval (a, b) from [0, 1]
there exists cylinder∇α1α2...αk

of some rank k such
that it is contained in (a, b). Then for mn > k,

∇α1α2...αk...αmn−1cmncmn+1 ∩O = ∅.

Hence, the set O is a nowhere dense set by de�ni-
tion.



Âiñíèê Êè¨âñüêîãî óíiâåðñèòåòó

Ñåðiÿ: ôiçèêî-ìàòåìàòè÷íi íàóêè

2009, 2 Bulletin of University of Kyiv

Series: Physics & Mathematics

The set O is perfect according to theorem
about structure of perfect sets of real numbers [?].

2. Suppose F0 = [0, 1], Fk is a union of cylin-
ders of rank k for Q-representation such that in-
terior points contains points of the set O, and

F k+1 = Fk\Fk+1.

Then λ(Fk+1) = λ(Fk)−λ(F k+1), O ⊂ Fk+1 ⊂ Fk
∀k ∈ N and λ(O) 6 λ(Fk+1)→ λ(O) (n→∞).

Since

λ(Fk+1) =
λ(Fk+1)

λ(Fk)
· λ(Fk)

λ(Fk−1)
· . . . · λ(F1)

λ(F0)
,

it follows that

λ(O) = lim
n→∞

λ(Fk+1) = lim
n→∞

m∏
k=1

λ(Fk)

λ(Fk−1)
=

=

∞∏
k=1

λ(Fk)

λ(Fk−1)
=

∞∏
k=1

[
1− λ(F k)

λ(Fk−1)

]
.

Since
λ(F k+1)

λ(Fk)
> q2min > 0, the series

∞∑
k=1

λ(F k)

λ(Fk−1)
is divergent, and the last in�nite

product does so. Thus λ(O) = 0.
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