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= Angular diameters and limb darkening of stars

The potentialities of the joint estimation of several unknown parameters of an arbitrary object from the results
‘of measuring the power spectrum of speckle images are investigated. A typical problem of the joint estimation
of the angular diameter and the coefficient of limb darkening of a stellar disk with a linear darkening law is
analyzed. It is shown that strongly correlated estimates of the unknown parameters are obtained in this case,
regardless of the means of estimation, and the correlation coefficient of the jointly effective (Kramer-Rao)
estimates is a function of the observation circumstances and the characteristics of the observed object. An
optimum strategy for solving this problem is proposed, allowing for the invariance of the average number of
-detected photons per speckle for different models describing the brightness distribution over a stellar disk.
The results obtained make it possible to plan an experiment to solve the problem of measuring the angular
diameter and limb darkening of a star by the method of speckle interferometry.

INTRODUCTION

~ In the first paper of this work! a general
relation was obtained determining the lower limit
(the Kramer—Rao limit) of the dispersion of an esti-
mate of an unknown scalar parameter p of an arbi-
trary object from the results of measuring the power
spectrum of speckle images:
4 - (1)
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ngg is the average number of detected photons per
speckle, M is the number of speckle images, ¢(v,
¥, p) = |fp(v, ¥, p)|2 is the normalized square
of the absolute value of the Fourier transform of
the brightness distribution over the object, gp(v)
is the diffractional optical transmission function”
(OTF) of the telescope, and vp is the diffraction-
limited spatial frequency in the telescope. The pro-
blem of measuring the angular diameter of a star
for the model of a uniformly luminous (uniform)
disk was investigated using this relation.

[ao(tv;:,p) ]z vvdp

(2)

It is obvious that an angular diameter ob-
tained under the assumption of a uniform disk has
a somewhat arbitrary character. It is also obvious
that the more perfected the model representing the
brightness distribution over the stellar disk, the
closer the angular diameter will be to the true
value. The relative brightness distribution over
the projection of the visible surface of a star onto
the picutre plane is expressed by the limb-darken-
ing law. Ideally, of course, one would wish to ob-
tain not only the angular diameter but also the
brightness distribution over the disk for the meas-
surements, since this information is just what makes
it possible to find the source function in the stel-
lar atmosphere. In the final analysis, this would
be a powerful means of testing theoretical models
of stellar atmospheres.

For an extensive class of models of thin stel-
lar atmospheres, the theory of Ref. 2 yields a so-
called linear law of limb darkening,
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I(x)=I(0) [1—u(1—cos x)], (3)

where I(0) is the brightness at the center of the
stellar disk, x is the angle between the line of
sight and the normal to the stellar surface, and
u is the coefficient of limb darkening.

The stars currently accessible to the method
of speckle interferometry, however, evidently pos-
sess extended atmospheres,3 and the linear law
(3) is inapplicable to them, strictly speaking. On
the other hand, at the present time there is no
satisfactory theory of the escaping radiation for
extended atmospheres, *»5 and expressions describ-
ing limb darkening in analytic form do not exist.
Therefore, the linear law (3) is used, as a rule,
to interpret interferometric observations®:? or the
light curves of eclipsing binary systems.?

Investigations of the influence of effects of
limb darkening on the measurement of angular dia-
meters by intensity interferometry were made by
Hanbury Brown et al.® Besides (3), they included
in the analysis the more complicated law ‘

I(x)=I(0) [1—u(1—cos %) —v(1—cos x)z—w(i—cosx)’] . (4)

This analysis showed that the correlation curve
of intensity fluctuations, measured by a given inter-
ferometer and proportional, as is well known, to
the coherence function r?(d) of the source, where
d is the interferometer base line, in its shape up
to the first minimum is not sensitive to the bright-
ness distribution over the stellar dark. Moreover,
they concluded that if the measurements of the co-
herence function of the source cover it only up
to the second minimum, it is practically impossible
to distinguish between different darkening laws,
e.g., (3) and (4), or to give preference to some
choice from the set of values of u, v, and w in
(4). Therefore, observational data were interpreted
at first through the angular diameter 6yp of the
equivalent uniform disk. Then to obtain the true
angular diameter 6pp of the limb-darkened stellar
disk, a correction was introduced through the
approximate formula

eLn _ [ 1—'11/3 ],I’ 5
8rs  L1—7a/154 (3)
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where the values of u were assigned by fitting Eq.
(3), by the method of least squares, to the bright-
ness distribution over the disk given by a certain
model stellar atmosphere. Equation (5) approxi-
mately (to within 1%, however) reflects the connec-
tion between 6rp and 6yp obtained through the
appropriate scaling with respect to the argument

of the coherence functions of the source, under
the condition that they coincide at the point r2(d)=
0.3. This point was chosen because the majority
of measurements of angular diameters by an inten-
sity interferometer were made for r?(d) = 0.3. The
use of Eq. (4) instead of (3) hardly alters the
final value of 6r,p.

STATEMENT OF THE PROBLEM

' A question arises: Is it possible to deter-
mine the angular size of a star and the brightness
distribution over its disk, described by a limb-
darkening law, from the power spectrum of speckle
images? Of course, in the given context the pro-
blem must have the following statement. A suitable
limb-darkening model, characterized by one or
several parameters, is chosen from a priori con-
siderations. It is required to find out how precisely
one can estimate this or these parameters jointly
with the estimation of the angular diameter by the
method of speckle interferometry. The problem
can be formulated differently: With what confidence
can once decide, within the framework of a given
~method of data collection and treatment, which of
a set of possible models best describes the object?

As was done in Ref. 1, we represent the i'e-
sult of measuring the quantity ®©(v, p) at the i-th
point of the power spectrum in the form

S=0(v, p)+vy i=1, 2,... k, (6)

where P=p(py ps, ..., py) is the vector parameter to
be estimated, k is the total number of measurements,
equal to the number of independent reading points
in the power spectrum, and vj are the independent
measurement errors, with a zero mathematical expec-
tation [assuming an adequate model ®(v, p)) and

a dispersion

az - [1+7n0.80 (vi) © (v, p) |* (N
T mt (M) g () I®

Equation (7) allows for the influence of speckle .
noise and quantum fluctuations and is valid under
the conditions® np > 1 and (D/r,)2 » 1, where
nt is the average number of photons detectable in
one speckle image, D is the telescope diameter, and
r, is the coherence radius of the wave front, dis-
torted by atmospheric turbulence, in the aperture
(Fried's parameter!?®).

GENERAL SOLUTION

Let G(p) be the covariation matirx of the esti-
mate of the vector p (the matrix of errors) and
A be the matrix of partial derivatives 9@ (v, p)/dp;
(j=1, 2, ..., N), which exist for all p; Q is a
secular matrix with diagonal elements wj = 1/ 02
(i=1, 2, ..., k), where o?; are defined by Eq.
(7). We can show that the matrix G(p)—(4'Q4)-*
is nonnegative definite for all P, which can be
written as .

6= (4wa), R (8)

where t is the transposition symbol. The inequality
(8) is a generalization of the Kramer—Rao inequality
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to the case of a vector parameter.'® The lower
limit in (8) is reached if, first, the measurement
errors [i.e., the values of vj in (6)] are distri-
buted normally, which will occur for a sufficiently
large volume M of the sample of speckle images by -
virtue of the central-limit theorem. Second, the
function @ (v, p) must be linear with respect to p.

If 0(v,p) is a nonlinear function, then the estimate
P will be effective only with an unlimited increase
in the number of mesaurements (k » «),? i.e.
asy‘mptotloally The number of independent read-
ing points in the power spectrum is' k « (D/r,)? .
and for (D/r,)2 > N one can obtain an estimate P,
sufficiently close to the effective value if @ (v, p)

is a nonlinear function.

The diagonal elements of the covariation matrix
G(p) represent the dispersions o.*?2, oX 2, ..
oN*2 of estimates of the components of the parame-
tric vector p, while the nondiagonal elements repre-
sent Cov (pj, Pg) = qjeo*jo*e, where qjq = q(pj,
py) is the correlation coefficient of estimates of the
components pj and pg.

The correlation coefficient of the jointly effec-
tive estimates p'; and p 3, according to (8) and with
)

allowance for (7), is
S < (9)
YK; YK,
where
oo
D dvd
il : (e 1 )( ) vavay
00 [1+nosgn(v)®(v7¢,P)]z ’ (10)
Kj = Kjj, and K¢ = K¢y, i.e., Kj and Ky have

the same meaning as in (2) only without the quantity
ngs in front of the integral. Here, as in Ref. 1,
the transition is made from summation over the inde-
pendent reading points to integration over the en-
tire power specturm.

For signals with low light levels, i.e., for
Nog < 1, the term n.gs(v)®(v, ¢, p) in the denomi-
nator of the integrand of (10) can be neglected.

Then
o0 )( 3(D—) v dv dy,
9 p; ap:

Ko=J 1o 1

and the integrals K; and Ky are simplified similarly.
Thus, in this case Jthe correlation coefficient aje,
ceases to depend on ngg.

an

When the components p,, py, ..., PN are
estimated separately (when all but one of them are

z
1 ucosX=uYi-réja*
TN
1 T-u
—1~
L/ ]
z
FIG. 1. Ideal image of a stellar disk with limb darkening by

the law (3); 2a = ROy, where R is the focal length of the tele-
scope.
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FIG. 2. Correction coefficient q of jointly effective estimates
of the parameters u and £ as a function of € = 6;pDiA: 1,
1', and 1") u = 0; 2, 2') and 2") u = 0.5; 3, 3', and 3") u =1
for nog < 1, ng = 1, and ng = 102, respectively. Region of
values of q: a) 0.95< q< 1; b) 0.5 <q < 1.

assumed to be known), the accurcy of the effective
estimate is determined by Eqs. (1) and (2). In

a joint estimate, when N = 2, the Kramer—Rao limit
for o.*? and of ? is determined by the rela-
tions 13

0,° . ot— a.’ , ’ (12)
1_qz 1_qz

where o,% and o¢,? are the dispersions of the
separately effective estimates p, and p,, respec-
tively, and q = q(p;:, P,) is defined by Eq. (9).

6=

CORRELATION COEFFICIENT OF ESTIAMTES FOR
A LINEAR DARKENING LAW

Let us analyze the possibility of a joint esti-
mate of the angular diameter 6y and the coeffic-
ient of limb darkening u from the power spectrum,
under the assumption that the brightness distri-
bution over the stellar disk is described by Eq.
(3). We find the Hankel transformation of I(y)
(Fig. 1) using the integral*

1

jx““ (1—2%)# Jo (bx) dz=2"T (3+1) b=+ Jaypsu (), (13)

[6>0, Rea>—1, Rep>—1].

In our case o = 0 and g = */,. As a result, the
normalized square of the absolute value of the spec-
trum of the object has the form

— Jy(mel) ]2 (14)

9 2], (neg)
+uv2
(3—u) nek u¥2n (nek)*

where ¢ = 6p,pD/2 is the measure of the closeness
of the limb-darkened disk to a diffraction element
of resolution of the telescope of diameter D; § =
v/ivp (0< £ < 1), where vp = D/A is the diffrac-
tion-limited frequency in the telescope; J, and
J3/, are Bessel functions of order 1 and 3/,,
respectively.

The adopted model (3) of limb darkening, for
an average number ngg of photographic events per
speckle, yields

0@ =—— | -0
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n,.an.[1+(1—i3) a‘], (15)

where ng is the average number of photographic
events per diffraction element of resolution, which
we define as?

n.=0,3421]nvtxAMo’. (16)

Here ny is the spectral flux density from the star
[quanta/(cm2-sec'nm)], tg is the time of exposure
of one speckle image, and A\ is the half-width of
the spectral band of the filter. By the quantity

n we understand the equivalent quantum yield (DQE
of Refs. 15 and 16) of the speckle camera.

We calculate dthe correlation coefficients of
estimates of the parameters u and ¢ for several
values of u and ng on Nairi-K and ES-1022 compu-
ters in accordance with (9). For gp(¢) we used
the OTF of a telescope with a continuous round
aperture,

go(E)= %(arccos E—EV1—8). 17

In Fig. 2 we give the dependence of q on ¢
for fixed values of u of 0, 0.5, and 1 for the cases
of ngg « 1, ng = 1, and ng = 102. It is seen from
Fig. 2 that, first, the correlation coefficient de-
creases with an increase in ngg while it increases
with an increase in u; second, in the case of
ngg < 1 the correlation coefficient differs little
from one for all values of € up to ¢ = 10. The same
thing is observed at n,g > 1 for darkening coeffi-
cients u > 0.5. The presence of such a strong
correlation between the quantities u and e estimated
from the power spectrum means that it is very dif-
ficult, in practice, to separate their influence on
the shape (profile) of the spectrum, while for ¢ <
1.5 it is, perhaps, fundamentally impossible to do
this.

We emphasize that the correlation coefficient
that we have found is not selective and reflects
a fundamental property of the estimation (regard-
less of the method) of the parameters u and e on
the basis of measurements of the power spectrum
of speckle images. It is obvious that the quantity
q reflects the linear component of the spurious func-
tional dependence arising within the framework of
the given method of data collection and treatment.

From Eqgs. (12) it follows that as q + 1, no
matter what oy and o, (the rms errors of the sepa-
rate estimates) are, the values of o*; and o*,
grow without limit, and a joint estimate of the
parameters losses any meaning. Even for large ¢
and (or) ng, excluding the case of u < 0.5, the
situation remains extremely poor. And it is not
only that the values of o¥,; and o*. will be large.
For estimation, e.g., by the method of least
squares, the matrix of coefficients of the system
of normal equations will be poorly conditional — a
rather typical case in problems of nonlinear esti-
mation. Specially developed methods of improving

. the conditionality of the matrix exist for the solu-

tion of such problems (the Marquardt and Jones
methods, methods of "choice of directions,"” etc.1?),
but even they do not always lead to succes. In
any case, the indeterminacy inherent to the estimate
U and € remains. An error, e.g., in the estimate
U must lead toan error in the estimate ¢ and vice
versa, i.e., the soltuion cannot be considered stable
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COUPLING EQUATION

One circumstance exists which must always
be kept in mind. No matter what model brighness
distribution over the stellar disk is proposed, one
thing remains unchanged: the average number of
photographic events per speckle for the given cir-
cumstances of observation. In the first article?
of this work it was shown that the model of a uni-
form disk gives

nos=nl(1+802)1 (18)

where €, = 6ypD/x is the measure of the closeness
to a uniform disk. Equating.the right sides of Egs.
(15) and (18) to eachother, we find

e O _[ 3 ]"“
eu— Bup 3—u ’

This relation gives barely larger corrections than
the relation (5) in the transition from 6yp to 6rp
for a known u. In the transition from 6yp to 6rp
for a fully darkened disk (u = 1), e.g., a correc-
tion factor 1.118 is found from Eq. (5), while 1.225
is found from Eq. (19). Remember that Eq. (5)

is approximate; the exact value of the correction
factor according to Hanbury Brown et al.® is 1.127,
although they ultimately corrected their values of
the angular diameters (for the case of u = 1) with
a coefficeint 1.134.

With allowance for the foregoing, the following
course seems natural in a joint estimate of u and
e. First we estimate the value of ¢,, the measure
of closeness to the equivalent uniform disk. This
can be done, e.g., by the method of least squares
(MLS): In nonlinear estimation, MLS estimates are
asymptotically effective.'” Then we find the MLS
estimates of the parameters u and €, using the
function (14) when the coupling equation (19) holds
between the parameters. This can be done, e.g.,
by the method of Lagrangian multipliers.'®

First of all, however, we must answer a ques-
tion: Does such an estimation procedure always
make sense? Can it be that the difference between
these models (of a uniform and a limb-darkened
disk), under the condition that their parameters
are connected by Eq. (19), is so slight that it is
easily smoothed over by measurement errors? Let
us try to find out.

(19)

PROBABILITY OF A CORRECT DECISION

To simplify the discussions, we agree to assume
that the models under consideration adequately .
describe the corresponding objects. An answer
to the question of which of two possible objects
yielded the given power spectrum can be obtained
by methods of the statistical theory of decision
making (or the theory of verification of hypo-
theses). Since probability-ratio criteria are the
most powerful of all possible criteria (the Neymann—
‘Pearson lemma),!® as the critical statistic we shall
use the logarithm of the probability ratio (the cri-
terion was first used to dlstmg'ulsh images of
Harris?°).

For convenience, .we designate ‘®(Ej, €0) = 911 a
and #(&j," u, €) = ¢,;, where the index i takes
values from 1 to k, while k-is the number of inde-
perident readmg points in’ the power spectrum, as
before. As we did above, we represent the result
of the measurement of the quantity ¢ at the i-th
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point in the form (6). Then the probability func-
tion due to the presence of ¢, has the form

k

L(0D,)= :[[(—;:_‘i )’hexp[ ______m;(S;—O,,)Z ] )

i=1

(20)

where we take the average error of umt weight
as one. Similarly,

R

=1

2y

If the alternatives- ¢, and &, are a priori equally
probable, then the descision must be made on the
principle of maximum probability. We define the
critical statistic as

(22)

=212 Z [00(S—02) —0:(S—0.0)°].

L(0 )

Obviously, if y,, > 0, the decision should be made
in favor of ¢,; otherwise, i.e., for y;, < 0, the
decision should be made in favor of ¢,. Knowing
the distribution of the quantity y,,, one can cal-
culate the probability of making the correct decis-
sion.

In fact, suppose that we have analyzed an
object having a spectral square ¢,. Then, substi-
tuting Sj = ¢,j = vj into (22), we obtain

Y (@)= Z ;[ (Oy—D2:) % + 20, (D4 —D:} 1.

immi

(23)

Since the quantity vi is normally distributed, y,,*
(¢,) also has a normal distribution with a mean
value

1.3

B =<{y1? =Z| 0 (Oi—02:)?

tamt

(24)

and a dispersion defined in.the well-known way:
o\(2 = (y,2> — u?. It is easy to show that

R
ot Y0 D00 (25)

fmmi

The probability of a correct decision is calculated
as follows:

[ ('Yiz P') ]d'{u. (26)
Performing the change of variables (y;, —u)/ oy =
z, we obtain
1 ¢ z! (27)
pP=— ) exp\ ——)dz,
¥2n _guv ( 2 )
where
—-———[Zﬂ);(wu (Dz- ] (28)

im=1

Converting to integral form and using (7), we find

b yu—hek. (29)
o 2
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FIG. 3. Dependence of the quantity W/ Oy normalized so that
it does not depend on M, on the measure of closeness to an equi-
valent uniform disk, €9 = 8ypD/ A: 1 and 1') ng = 1; 2 and 2')
ng = 102 for u = 0.5 and 1, respectively. Dashed lines denote the
dependence of (u/oY)/ns\/ M- 1on €, in the case of ng(1 +

€02) < 1: 3) u=10.5 3")u=1
where 1
Kom e e e (30)
30 (8)= D, (k, e0)— D= (8, u, )= [3_7(&2 1
_T%ﬁ[(i—u)?%%é@+u7ﬂ%%%l]z @D

and o = e/e, and is defined by Eq. (19).

For signals with low light levels, i.e., for
ng(l + €,2)«< 1, we have

B ey YD) aE, (32)
Oq 2
where
(33)

Ko— | [20(®) IF[60 (&) 1"t d.

Thus, the probability of a correct decision
is a function of the circumstances of observation
and the characteristics of the object observed.

In Fig. 3 we give the dependence of (u/ay)
vM—1 on ¢, for the values of u = 0.5 and 1 and
ng = 1 and 102. The dashed lines in this figure
correspond to the dependence for ( u/ c.vY)/ns M-
1)} in the case of ng(l +e,%) «< 1.

Let us determine the number M of speckle im-
ages required to make the correct decision with
a probabiltiy P = 0.99 (i.e., the probability of a
false alarm in 0.01). One should not be misled
by such a high probability, since the value P =
0.5 corresponds to random decision making under
the conditions of an alternative. Using normal-
distribution tables,'® we find that for P = 0.99 the
value of [oy should be 2.33. From (29) we obtain

6,91
M=1+ Ko
In Fig. 4 we show the dependence of the necessary
number M of speckle images on the stellar magnitud¢
my of the object when ¢, = 0.5, 1, and 2 for u=
0.5 and 1. The quantity my appears in Eq. (34)
through Eq.(16) by way of the well-known relative

(35)

(34)

ny=n,10~"*"v,
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FIg. 4.
decision with a probability P = 0.99 as a function of the stellar
magnitude my of the object: a and 1') €, = 0.5; 2 and 2') g4 =

Number M of speckle images required to make the correct

1; 3and 3') €p =2 for u = 0.5 and 1, respectively. Observing
conditions: rg = 10 cm, tg = 0.01 sec, AA = 40 nm, N = 10%.

where n, is the spectral flux density from a zeroth-
magnitude star, equal to 10“ quanta/(cm2-sec:nm)
in the green region of the spectrum.2?’ The follow-
ing observing conditions were assumed: n = 10%,

tg = 0.01 sec, AX = 40 nm, and r, = 10 cm. Here
we did not allow for light losses in the atmosphere
and in the optics of the telescope and the speckle
camera.

Thus, the proposed strategy makes it possible
in each concrete situation to judge the correctness
of a joint estimate of the unknown parameters u
and €. For this it is sufficient to know the mea-
sure of the closeness to the equivalent uniform
disk, since the dependence of u/oy on u is rather
weak, as can be seen from Fig. 3. Consequently,
one should always start with the estimate of ¢,.
And if it turns out that the brightness of the ob-
ject and the circumstances of observation (i.e.,
the values of n, r,, and M) do not allow one to
make a correct decision, with a sufficiently high
probability, about the adequacy of the model as-
cribed to the given object, then one ends up being
confined to the simplest model ~ the model of an
equivalent uniform disk. Otherwise (when there
is sufficient information in the sample of speckle
images), one can change to a more complicated model
and seek a joint estimate of the angular diameter
and the coefficient of limb darkening in the pre-
sence of a coupling equation, which is a consequence
of the invariance of the average number of photo-
graphic events per speckle for different models de-
scribing the brightness distribution over the stel-
lar disk.

CONCLUDING REMARKS

1. Speckle-interferometric measurements of
the angular diameter and limb darkening [by the
law(3)] of the supergiant « Ori, made by Wilkerson
and Worden ’ using a 4-m telescope, yielded the
following results: in the continuum (510 + 5 nm
region) érp = 0".0520 % 0".0017 and u = 0.75 #
0.13 and in the TiO band (520 * 5 nm) 6rp =
0".0569 % 0".0010 and u = 0.93 * 0.03. The high
accuracy of the estiamtes of 61p and u, especially
in the TiO band, obtained from 180 speckle images
with the best, it is stated, agreement of the data,
attracts attention. And this is for ¢, = 1.7. More~
over, the discovered effect of an increase in dark-
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