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SOME COMBINATORIAL PROBLEMS ON BINARY MATRICES
IN PROGRAMMING COURSES
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The study proves the existence of an algorithm to receive all elements of a class of binary
matrices without obtaining redundant elements, e. g. without obtaining binary matrices that do not
belong to the class. This makes it possible to avoid checking whether each of the objects received
possesses the necessary properties. This significantly improves the efficiency of the algorithm in
terms of the criterion of time. Certain useful educational effects related to the analysis of such
problems in programming classes are also pointed out.
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1 Introduction

The stimulation of students' interest and motivation a certain discipline or branch of science
is a matter of combining a variety of methods. The present study discusses two techniques which
experience has shown to be quite efficient in programming classes:

1. Emphasizing the fact that the solution to a mathematical problem for all values of the
parameters is yet to be discovered (for example problems 1 and 2 below), students can be given an
assignment to write a program solving the problem in certain specific cases, e. g. not for all the
possible values of the parameters. In section 2 two problems such as the ones described above will
be formulated so that the students can write a program for relatively small values of the parameters
nand k.

2. It is also possible to point out that a particular problem may be solved by applying an
algorithm that is more efficient as compared with standard algorithms which excelling students do
not normally find difficult to apply. Section 3 offers a specific example how to apply this technique.

The present study is thus especially useful for students educated to become programmers as
well as for their instructors and lecturers.

The paper discusses certain combinatorial problems on binary matrices.

For the classification of all non defined concepts and notations as well as for common
assertion which have not been proved here, we recommend sources [1, 6, 7, 10, 14].

2 Some mathematical problems whose solution for all values of the parameters has not
been discovered and certain results related to these problems

A binary (or boolean, or (0,1)-matrix) is a matrix whose all elements belong to the set
B ={0,1}. With B, we will denote the set of all nxn binary matrices.

Using the notation from [15], we will call AX -matrices all nxn binary matrices in each row

and each column of which there are exactly k in number 1's.
Problem 1 Find out the number of all nxn binary matrices containing exactly k elements

equal to 1 in each row and each column, e.g. the number of all AX -matrices.
Let us denote the number of all A -matrices with A(n,k).

Problem 1 has not been solved for all values of the parameters. That is there is no known
formula to calculate the A(n,k) for all n and k. There are formulas for the calculation of the

function A(n,k) for each n for relatively small values of k ; more specifically, for k =1, k=2 and
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k =3. We do not know formula to calculate the function A(n,k) for k >3 and for all positive
integer n.
It is easy to prove the following well-known formula:

A(n1)=nl 1)
In [13] is offered the formula:
1 2
= Y 2)
2X)+3Xg+-+NX =N er!(zr)xr
r=2

One of the first recursive formulas for the calculation of A(n,2) appeared in [2] (see also [5,
p. 763]):

A(n,2) = % n(n-1)2[2n-3)A(n-2,2) + (n—2)?A(n-3.2)|; n>4

3
A(1,2)=0, A(2,2)=1, A(3,2)=6 ©)
Another recursive formula for the calculation of A(n,2) occurs in [4] :
An2) = (-Dnin-12)+ M0 ooy 13 @
A(1,2)=0, 4(2,2)=1
The following recursive system for the calculation of A(n,2) is put forward in [11]:
A(N+1,2)=n2n-1DA(n,2) +n°A(n-1,2)—z(n+1); n>2
z(n+1) = 5)
=n’(n-1)*4[8(n-2)(n-3)A(n—-2,2) +(n—=2)*A(n-3,2) —4x(n-1)]; n>4
A(1,2)=0, A22)=1, 7(1)=7(2)=~(3)=0, =(4)=9
where z(n) identifies the number of a special class of A’ -matrices.
The following formula in an explicit form for the calculation of A(n,3) is offered in [8].
2 B anp
a9 =y Vo ©

where the sum is done as regard all

w solutions in nonnegative integers of the equation

a+pf+y=n. As it is noted in [7] formula (6) does not give us good opportunities to study
behavior of A(n,3).
Let n be a positive integer and let AcB , isa n’xn® binary matrix. With the help of n—1

horizontal lines and n—1 vertical lines A has been divided into n® of number non-intersecting
nxn square sub-matrices A, 1<k,1<n,e.qg.

Ail A12 Ain
as| o P Pl Q
Anl Ahz Ann

The sub-matrices A, , 1<k,l <n will be called blocks.

Adding one more condition, we can make the problem 1 more complicated:

Problem 2 Find out the number z(n,k) of all n>xn® binary matrices that have k elements
equal to 1 in each row, each column, and each nxn block.

As demonstrated in [3], problem 2 has to do with the solution of a variety of combinatorial
problems associated with the Sudoku riddles.

Problem 2 is solved in [3] for k =1 and in [9] other methods are used to prove that
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2(n,1) = (n1y" (8
No formula has been put forward for the calculation of the function (n,k) when k >1.

3. S-permutation matrices
A matrix AeB , is called S-permutation if in each row, each column, and each block, of A

there is exactly one 1. Let the set of all n®xn® S-permutation matrices be denoted by an .
Two matrices A= (g;) €, and B = (by;) €X,, 1< i, j <n? will be called disjoint, if there
are not elements with one and the same indices a; and b; suchthat a; =b; =1.

The following obvious proposition is given in [3]:
Proposition 1 [3] Square n®xn? matrix P with elements of an ={1,2,...,n’} is Sudoku

matrix if and only if there are matrices A, A,,..., A,eX,, each two of them are disjoint and such

that P can be given in the following way:
P=1-A1+2-A2+~-+n2-An2
l

Let us analyze the following programming task:

Task 1 Write a program to obtain all S-permutation n®xn” matrices for a specific positive
integer n.

Experience shows that the majority of students do not fined it difficult to solve a task such
as the one offered above. Unfortunately, the solutions they normally suggest are not very efficient.
Below we present of the most common solutions given by students:

It is easy to observe that if we remove the condition to have only one 1 for each block of the
n®xn’ binary matrices, the task above can be transformed into a task for the obtaining of all
permutations of the integers from 1 to n?. This combinatorial task is often discussed in
programming classes and a clear-cut solution can be found in a number of study books, such as
[12]. Let 7 =(p,, P,,.--» P,,» be a permutation of the integers from 1 to m. Then we obtain the

mxm binary matrix B =(b;)€B,, such that b, =1 if and only if p;=j, 1<i,j<m. Itis clear

that the matrix B obtained in this case has one 1 in each row and each column. This is where the
name of such matrices comes from: permutation matrices. This gives us the following algorithm for
the solution to task 1:

Algorithm 1 Obtaining all S-permutation matrices.

1. Obtain all the permutations of integers from 1 to n?;
2. For each permutation 7z =(p,, p,,..., pn2> obtained in step 1, obtain the binary matrix

A= (a;)€B ,, suchthat o =1 ifand only if p; = j. Inall other cases;; =0, 1<i, j<n?;

3. For each matrix obtained in step 2, check whether each block has only one 1. If (true)
then the matrix is S-permutation, if ( false) then we remove this matrix from the list.

Unfortunately, algorithm 1 entails the obtaining of a variety of redundant matrices and a lot
of time is wasted to check whether these meet the conditions (step 1). The total number of the

permutation matrices obtained in algorithm 1 is n®!, while according to formula (8) the number of
the S-permutation matrices is (n!)". But it is not difficult to see that n’!>(n!)*" when n>2.

Importantly, the program implementation in step 1 of algorithm 1 is also significantly aggravated
and requires certain efforts and mathematical competence.

When n=2, we have 2%=24, (21)*=16; when n=3, we have 3°!=362880,
(31)*° =46 656 ; when n =4, we have 4°1=20922 789888000, (4!)** =110075314176, etc. It is
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possible to prove that as n increases, the value of expression W increases as well. This proves
n!

the inadequate efficiency of algorithm 1.

The present study will demonstrate that there is an algorithm for the obtaining of all S-
permutation matrices which bypasses the redundant, non S-permutation matrices. This reduces the
iterations in the algorithm to the absolute minimum and each iteration bypasses the checking
whether the matrix obtained is S-permutation. Such an algorithm is obviously more efficient and
takes less time to apply than algorithm 1. It is based on theorem 1 proven below:

Let denote with IT, the set of all (2n)xn matrices, which we shortly call T, matrices, in

which every row is a permutation of all elements of Z, ={1,2,...,n}. It is obvious that
) = (nl)” )

We will give a little bit more complicated definition of the term disjoint about IT, matrices.
Let C=(c;) and D =(d;) be two IT, matrices. We say that C and D are disjoint, if there are not
natural numbers s,t €{1,2,...n} such that ordered pair {c,c,,,.) has to be equal to the ordered pair
(dg,d, (o)

Theorem 1 There is a bijective map from IT, to z, and the pair of disjoint matrices of
[T, corresponds to the pair of disjoint matrices of an .

Proof. Let P = (p;);n., €I1,. We obtain the unique matrix of £ , from P with the help of

the following algorithm:
Algorithm 2 Obtaining just one matrix of an if there is given P = (p;),n., €11,
1. for s=1,2,...,ndo
2. fort=1,2,...,n do

begin

3. ki=pg;

4' I = pn+ts;

5. Obtain nxn matrix A, = (a;),., suchthat a, =1 u a; =0 inall other occasions;
end;

6. Obtain matrix A according to formula (7);
Let seZ, ={1,2,...,n}. Since ordered n-tuple (p, P,,---, Ps,y Which is s-th row of the

matrix P is a permutation, then in every row of nxn? matrix

Rs:[ASI A%Z A%n]

there is only one 1. For every j=1,2,....,n A is binary nxn matrix in this case. Analogously for
every teZ, because ordered n-tuple {(p,..;» Pritor---» Pricny Which is (n+t)-th row of P is a
permutation, then in every column of n?xn matrix

Ay
An
there is only one 1, where A,, i=1,2,...,n is a binary nxn matrix. Hence, the matrix A which is

obtained with the help of algorithm 2 is an matrix.
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Since for every P eI, with the help of algorithm 2 is obtained unique element of z, then
this algorithm is a description of the map ¢:I1, —>2n2. It is easy to see that if there are given

different elements of IT,, with the help of algorithm 2 we can obtain different elements of Py

Hence, ¢ is an injection. But according to formulas (8) and (9) ‘an

=|11,|, from where it follows

that ¢ is a bijection.
Analyzing algorithm 2 we take the conclusion that P and Q are disjoint matrices of IT, if
and only if @(P) and ¢(Q) are disjoint matrices of Z, according to the above given definitions.

The theorem is proved.
U

As an entailment of theorem 1, the following algorithm is received for the obtaining of all S-
permutation matrices, which, based on the arguments above, can be claimed to be considerably
more efficient than algorithm 1 for the same problem.

Algorithm 3 Getting of all S-permutation matrices.

1. Obtain all the permutations of integers from 1 to n?;

2. With the help of all permutations obtained in step 3, obtain all IT, matrices;

3. From each IT, matrix obtained in step 3, obtain the next S-permutation matrix with the
help of algorithm 2.
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