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Abstract. We endow the set of persistence diagrams with the strong topology (the topology of countable direct limit of increasing
sequence of bounded subsets considered in the bottleneck distance). The topology of the obtained space is described. Also, we
prove that the space of persistence diagrams with the bottleneck metric has infinite asymptotic dimension in the sense of Gromov.

INTRODUCTION

Topological Data Analysis (TDA) is a field in applied mathematics concentrated around investigation of big data by
topological methods. Imposing metric structures in the data set allows for applying techniques from algebraic topol-
ogy. In this way, the notion of persistent homology was introduced [4]. The persistent homology plays an important
role in TDA. The persistence diagrams are used to characterize persistent homology and thus to describe geomet-
ric properties of data. The set of all persistence diagrams can be endowed with different metrics. The most known
are the Wasserstein metric and bottleneck metric. The spaces of persistence diagrams are object of considerations
in numerous publications (see, e.g., [5, 9, 13, 14, 17]). In particular, in [14] a characterization theorem for compact
subsets in the space of persistence diagrams is proved. It is proved in [2] that the space of persistent diagrams is of
infinite asymptotic dimension in the sense of Gromov. This concerns the Wasserstein metric on the set of persistence
diagrams. Answering a question from [2] we prove an analogous result for the bottleneck metric on this set. As we
remark below, the set of all persistence diagrams is nothing but the infinite symmetric power of the upper (positive)
half-plane. In this note we consider the strong (direct limit) topology on this set. One of our results is that the space
of the persistence diagrams with this topology is homeomorphic to the countable direct limit of the euclidean spaces.

PRELIMINARIES

Persistence diagrams
Let ∆ = {(x, y) ∈ R2

+ | x = y}, X̂ = {(x, y) ∈ R2
+ | x ≤ y}, and X = X̂ \ ∆. For any n ∈ N, let X̂n = {(x, y) ∈ X̂ | y ≤ n},

Xn = X̂n \ ∆. A persistence diagram is a function µ : X → Z+ such that µ(a) = 0 for all but finitely many a ∈ X̂ and
µ(a) = 0 for all a ∈ ∆. The support of µ is the set supp(µ) = {a ∈ X̂ | µ(a) > 0}. By D we denote the set of all
persistence diagrams. Given n ∈ N, we denote byDn the set of all µ ∈ D such that |supp(µ)| ≤ n.

Bottleneck distance
Let µ ∈ D. A sequential representation of µ is a finite sequence (a1, . . . , ak) such that the following are satisfied:

1. for every a ∈ supp(µ), |{i ≤ m | a = ai}| = µ(a);
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2. if ai < supp(µ), then ai ∈ ∆.

The number k is said to be the length of the representation (a1, . . . , ak). By S k, the group of permutations of the set
{1, . . . , k} is denoted. Let µ, ν ∈ D. We define

d(µ, ν) = inf{min{max{ρ(ai, bσ(i)) | 1 ≤ i ≤ k} | σ ∈ S k}
| (a1, . . . , ak), (b1, . . . , bk) are sequential representations of
µ and ν respectively, k ∈ N}.

(The assignment ai 7→ bσ(i), i = 1, . . . , k, is said to be a matching (see, e.g., [6] for details). The function d is known
to be a metric onD (the bottleneck metric; see, e.g., [6]).

Space R∞

Recall that the direct limit of the increasing sequence of topological spaces X1 ⊂ X2 ⊂ . . . (here Xn is a subspace of
Xn+1, for each n) is the set X = ∪∞n=1Xn endowed with the strongest topology inducing the original topology on each Xn.
The obtained topological space is denoted by lim

→
Xn. We identify every (x1, . . . , xn) ∈ Rn with (x1, . . . , xn, 0) ∈ Rn+1.

Thus, Rn is regarded as a subspace in Rn+1. We denote by R∞ the direct limit of the sequence R ⊂ R2 ⊂ R3 ⊂ . . . . A
characterization theorem for the space R∞ is proved by K. Sakai [15].

Theorem 1. (Characterization Theorem for R∞) Let X be a countable direct limit of finite-dimensional compact
metrizable spaces. The following are equivalent.

1. X is homeomorphic to R∞;
2. for every finite-dimensional compact metrizable pair (A, B) and every embedding f : B → X there exists an

embedding f̄ : A→ X that extends f .

Asymptotic dimension
Let Y be a metric space. A family A of subsets of X is said to be uniformly bounded if sup{diam(A) | A ∈ A} < ∞.
Given D > 0, we say that a family A is D-disjoint if, for every distinct A, B ∈ A, dist(A, B) ≥ D We say that the
asymptotic dimension of Y does not exceed n, if, for any D > 0, there exists a uniformly bounded coverU of Y such
thatU = ∪n

i=0Ui, where every familyUi is D-disjoint, i = 0, . . . , n. The notion of asymptotic dimension is defined by
M. Gromov [8]. See, e.g., [1] for properties of the asymptotic dimension.

MAIN RESULTS

Strong topology on the space of persistence diagrams
For every n ∈ N, let

Dn = {µ ∈ D | |supp(µ)| ≤ n and supp(µ) ⊂ Xn}
andD∞ = lim

→
Dn.

Theorem 2. The spaceD∞ is homeomorphic to R∞.

Proof. For any n ∈ N, define a map ξn : X̂n
n → Dn as follows: ξn(a1, . . . , an)(a) = |{i | a = ai}|, for all a ∈ Xn. Note

that this map is clearly continuous and it admits a factorization ξn = ξ′nξ
′′
n , where ξ′′ : X̂n

n → (X̂n/(X̂n ∩ ∆)n)n is the
factorization map, where ∗n stands for X̂n ∩ ∆ (actually, ξ′′n = qn, where q : X̂n → X̂n/(X̂n ∩ ∆)n is the factorization
map). Therefore, Dn is the orbit space of the action of the group S n on the space (X̂n/(X̂n ∩ ∆))n by permutation of
coordinates. In other words,Dn is homeomorphic to the nth symmetric power S Pn(X̂n/(X̂n∩∆)). The orbit containing
(x1, . . . , xn) will be denoted by [x1, . . . , xn]. We denote by ∗n the point q(X̂n ∩ ∆) ∈ X̂n/(X̂n ∩ ∆). Identifying ∗n with
∗n+1, one can consider X̂n/(X̂n ∩ ∆) as a subset of X̂n+1/(X̂n+1 ∩ ∆). Then identifying [x1, . . . , xn] ∈ S Pn(X̂n/(X̂n ∩ ∆))
with [x1, . . . , xn, ∗n+1] ∈ S Pn+1(X̂n+1/(X̂n+1 ∩ ∆)) we finally obtain thatD∞ is homeomorphic to the space

lim
→

S Pn(X̂n/(X̂n ∩ ∆)) = S P∞(lim
→

X̂n/(X̂n ∩ ∆).
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The latter space is known as the infinite symmetric power construction [7]. For every n ∈ N, the space X̂n/(X̂n ∩ ∆)
is homeomorphic to the 2-dimensional disc. Therefore, the space S Pn(X̂n/(X̂n ∩ ∆)) is a finite dimensional absolute
retract (AR), see [18]. Similarly as in [19] one can prove that the space S P∞(lim

→
X̂n/(X̂n ∩∆) (and also the spaceD∞)

is homeomorphic to R∞. For the sake of completeness, we provide here a proof based on Sakai’s Characterization
Theorem 1. Let (A, B) be a finite-dimensional compact metrizable pair an let f : B → D∞ be an embedding. Then
there exists n ∈ N such that f (B) ⊂ Dn. As we already remarked, Dn is an absolute retract. Thus, there exists an
extension g : A → Dn of f . We denote by α : A → A/B the quotient map. Since the quotient space A/B is finite-
dimensional, there exists an embedding i : A/B → [0, 1]m, for some m. Without loss of generality we assume that
α(A/B) = 0, α(A \ B) ⊂ (0, 1)m, and m > n. Write i(a) = (i1(a), . . . , im(a)). Now, given x ∈ A, write g(x) as
[g1(x), . . . , gn(x)]. Then define

f̄ (x) =[g1(x), . . . , gn(x),
(1, 1 + i1(α(x))), . . . , (2n + 1, 2n + 1 + i1(α(x))),
(2n + 2, 2n + 2 + i2(α(x)), . . . , (4n + 3, 4n + 3 + i2(α(x))),
. . .

((m − 1)(2n + 1) + 1, (m − 1)(2n + 1) + 1 + im(α(x))), . . . ,
(m(2n + 1) + 1,m(2n + 1) + 1 + im(α(x)))].

First, note that f̄ is well defined and continuous. If x ∈ B, then ik(α(x)) = 0, k = 1, . . . , n(2n + 1), and therefore

f̄ (x) = [g1(x), . . . , gn(x), (1, 1), . . . , (n(2n + 1), n(2n + 1)))] = f (x),

because of our identifications. Clearly, f̄ is well-defined and continuous. Since A is compact, in order to prove that
f̄ is an embedding it is sufficient to prove that f̄ is injective. Let x, y ∈ A, x , y. If x ∈ B and y ∈ A \ B, then
|supp( f̄ (x))| ≤ n and, since ik(α(y)) , 0, for some k ≤ m, we conclude that |supp( f̄ (y))| ≥ n + 1. If x, y ∈ A \ B, then
there exists k ≤ m, such that ik(α(x)) , ik(α(y)). Since |supp(g(x))| ≤ n, we see that there exists j ≤ n + 1 such that

( j(2n + 1) + 1, j(2n + 1) + 1 + i j(α(x)) ∈ supp( f̄ (x)) \ supp( f̄ (y))

and therefore f̄ (x) , f̄ (y). The other cases being treated similarly, this proves injectivity of f̄ . By Theorem 1, D∞ is
homeomorphic to R∞.

Asymptotic dimension of the space of persistence diagrams
We consider the setD of all persistence diagrams with the bottleneck metric. Given n ∈ N, consider the set

Kn ={[(n, n + (n + 1) + t1), (2n + 1, 2n + 1 + (n + 1) + t2), . . . ,
(n − 1)n + (n − 2), (n − 1)n + (n − 2) + (n + 1) + tn−1)],

(n2 + (n − 1), n2 + (n − 1) + (n + 1) + tn)] | (t1, . . . , tn) ∈ [0, n]n}.

Clearly, Kn is isometric to the cube [0, n]n endowed with the l∞-metric. This easily follows from the observation that
every matching between two points from Kn realizing the bottleneck distance consists of pairs of points from X so
that each pair lies on a vertical line. Since n can be chosen arbitrarily large, the known properties of the asymptotic
dimension (see, e.g., [1]) imply the following.

Theorem 3. asdimD = ∞.

REMARKS

We conjecture that an analog of Theorem 2 can be proved for the space D∞ = lim
→
Dn in the case when every

Dn is endowed with the Wasserstein metric (also Wasserstein p, q metric considered in [2]). Since many spaces of
persistence diagrams are infinitely-dimensional, one can expect that the methods of infinite-dimensional topology,
in particular, the theory of infinite-dimensional manifolds, will be useful in their investigations. In [5], the space
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N of bounded persistent diagrams with less than N points is mentioned. We consider the space D̃N of exactly N

points (taking into account the multiplicities), N ∈ N. Having in mind the mentioned identification of persistence
diagrams and symmetric powers one can derive from [18, Theorem 4.5] that the space D̃N is homeomorphic to the
euclidean space R2N . This leads to the question of description of topology of the subspace D̃≤N = ∪i≤ND̃i ofD. In this
note we restricted ourselves with persistence diagrams of finite support. In some publications, persistence diagrams
with countably many points are also considered. In particular, it is known that the latter spaces are complete in the
Wasserstein metric. The possible applications could be sought in the [10, 11, 12, 16]. In the subsequent publications
we are going to consider the geometry of the complete spaces of persistence diagrams and some of their subspaces.
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