KHERSON STATE UNIVERSITY

Faculty of Computer Science, Physics and Mathematics
Department of Computer Science and Software Engineering

Master’s Degree Programme in Software Engineering

Development and audit of smart contracts of the
educational platform

Supervisor: Author:
Doctor of Physical and Mathematical Master’s student
sciences, Konnova Olga

Prof. Volodymyr Peschanenko

Reviewer:

PhD (Information Technology),
CEO of GARUDA.AI

Yuliia Tarasich

Kherson — lvano-Frankivsk — 2023

MIHICTEPCTBO OCBITU 1 HAYKHU YKPAITHU
XEPCOHCBKHUUA JEPKABHUU YHIBEPCUTET
DaKyabTeT KOMII’IOTEPHUX HAYK, (PI3UKH Ta MAaTEeMaTHUKH

Kadenpa koM’ roTepHuxX HAyK Ta NPOrpaMHOI iHKeHepil

PO3POBKA TA AYJIJUT CMAPT-KOHTPAKTIB OCBITHBOI
IVIAT®OPMU

Kgamidikamiitna po6ota (IpoeKT)
Ha 300yTTs CTYIEHS BHUILOI OCBITH «MaricTp

Buxonaina: 3100yBauka 2 kypcy 241M
rpynu

CremianbsHocTi 121 IHX)EHEpIs
IIPOrPAMHOT0 3a0€3MeYCHHS

OcBitHBO-TIpO(ECitHOT (HAyKOBOT)
nporpamu [HxeHepist IporpaMHOTo
3a0€3eUeHHsI

Konnosa Onsra BnaguciasiBaa

KepiBuuk: goktop dizuko-
MaTeMaTUYHHX HayK, Ipodecop
[lecuanenko Bomogumup CepriiioBud

Peniensent: nokropka ¢imocodii
(Indpopmariitini TexHOIOTIT),
JOoKTOpaHTKa [HCTUTYTY KiOepHETUKH
iMeni B.M.I'nymikoBa HAH VYkpainu,
nupektopka TOB «'APYJA.Al»
Tapaciu FOmis

Xepcon — IBano-®pankiBcrk — 2023

AHOTANIA

OnnaiiH OCBITHI TIATGOPMU MOYAIH 3'SIBISATUCS TOCUTH J1aBHO, aj€ BOHHU
MIPAKTUYHO HE PO3TJIAJAINCS K BapiaHT MOBHOI 3aMIHM TPAaJAULIMHOTO OIiaiiH-
HaBYaHHS y WIKoJax Ta yHiBepcuteTax. Opgnak nanaemis Covid-19 noBHICTIO
3MiHWJIA 110 cuTyaiito. CTyIeHTH MoYaldu BUMTHCS BIJJaJIC€HO Ta BUHHKIA
norpeda B IHCTPYMEHTaX, sIKI MOrjau O miaTpumaTtd ueil mponec. OnHi€O 3
TOJIOBHUX TI€peBar OCBITHIX OHJIAWH-TIATGOPM € Te, M0 BOHHU JO3BOJISIOTH
CTyJICHTaM 3/100yBaTH AKICHY OCBITY HE3aJI€KHO BiJ] reorpadiyHOTO MOJ0KEHHS
Ta (QI3UYHOTO JOCTYIY JO HaBYAIBHHMX 3aKJIajliB. TOMy HE JIMIIE MIKOJSAPI 4n
CTYJICHTH, a ¥ TMpaItordl JI0IH, sIKi 0a)Kar0Th OCBOITH HOBY CHEIIaJIbHICTh YU
MIBUIIUTH CBOIO KBaJi(piKaIlito, MOXKYTh HABYATHUCS Y 3pYUYHHM [T HUX Yac.

[lepexin 10 OHJIAH OCBITH, 3pOCTaHHS OCBITHIX IJIAT(HOPM Ta 30UTbIIEHHS
o0cAry OCBITHIX JJaHUX CTBOPIOIOTH CEpHO3HI MpoOJeMH, Taki sk Oe3mexa
JaHUX, aBTEeHTU(]IKAIis Ta ympaBiaiHHA (iHaHcaMH. biIokuyelH MoOXe cTaTu
MOTY)KHUM 1HCTPYMEHTOM TIJBHINCHHS HAIIMHOCTI Ta Oe3neku 1uiatgopm
OHJIaH-HaBYaHHA. BiH 3a0e3nedye HE3MIHHICTh JaHUX, 3axHUINAE iX BIJ
kibeparak, 3abe3meuye mpo30picTh Ta 0e3MeKy I BCiX y9acHUKIB cuctemu. Lle
MOKE JIOTIOMOITH 3MIIIHUTH JOBIPY J0 OHJAWH-OCBITH Ta 3poOUTH i1 OUIbII
JOCTYITHOK Ta HAAIMHOIO Il BCiX. | OJHMM 13 BaXJIMBUX KOMIIOHCHTIB
OJIOKYEHHY € CMapT-KOHTPAKTH.

CMmapT-KOHTPAKTH BIJIKpUBAIOTh HOBI OCBITHI MO>KJIMBOCTI,
MEPETBOPIOIOYM TPATUIlIMHI CHCTEeMH HaBYaHHS Ha Oe3lmeyHe Ta Mpo30pe
cepenoBumie. OmHak 13 3pOCTaHHSAM BUKOPUCTAHHS CMapT-KOHTPAKTIB Y
7o/1aTkax Oi3HEC-TPOIECIB BUHUKAE HEOOXITHICTh mepeBipku Oe3nekn. CMapT-
KOHTPAKTH TIPYHTYIOTBCS HA TIPOTPAMHOMY KOJi, TOMY MOXYTb MICTUTH
MMOMWJIKH, 110 MPU3BOJATH 10 HEKOPEKTHOTO BUKOHAHHS KOHTPAKTy. OCKUIBKU
chepa BUKOPUCTaHHS CMapT-KOHTPAKTIB YacTO TOB's3aHa i3 (iHaHcamu, IliHA

TaKHX IIOMHUJIOK MOXKEC 6YTI/I JOCHUTBb BHCOKOIO.

AKTYaJIbHICTh JOCJTIUKEHHSI TIOJIAra€ Yy HEOOXITHOCTI CTBOPEHHS
HaJlliHUX Ta O€3MeYHUX CMapT-KOHTPAKTIB JUIsl HIATPUMKH OCBITHBOTO
MpoLIECy, peecTpalii CTYIEHTIB, BHM3HAYEHHS iX YCHIIIHOCTI, PO3MOILTY
(¢iHaHCOBUX pecypciB Ta 0araThOX IHIIMX ACHEKTIB OCBITH. YacTHHOIO MeTu
IOr0 MPOEKTY € TepeBipKa po3pOOJIEHUX CMApT-KOHTPAKTIB Ha HASBHICTH
Bpa3JIMBOCTEH, KOPEKTHICTh BUKOHAHHS Ta BIAMOBITHICTH criel]iKaIiisam.

3B’A30K po00TH 3 HAYKOBMMH INpPOrpamMaM, INIAaHAMHU, TeMamMH. Tema
poOOTH 3HAXOIUTHCS y cepl HAYKOBUX JOCHIKEHBb Kadeapu KOMIT'IOTEPHUX
HayK Ta mporpaMHoi iHxkeHepii: «KibepOesneka Ta 1HCEpIiHHE MOJICITIOBAHHS»
(mpod. Ilecuanenko B.C.) ta «KpunrtoekoHomika Ta OyoKuelH» (Mpod.
ITecaanenko B.C., Ko6enp B.M.).

O0’eKT D0CaiTKEeHHS] — CMAPT-KOHTPAKTH JIJISl OCBITHBOI IJIATHOPMH.
IIpeamet pocigaxeHHs — IPOLEC PO3POOKU Ta ayJUTy CMapT-KOHTPAKTIB.

Meta gocJigxeHHs: PO3pOOJICHHS CMapT-KOHTPAKTIB, SIKi PETYITIOIOTH
OCHOBHI Oi3Hec-TipoliecH OCBITHROI TutaThopmu. IlpoBeneHHs ayauTy cMaprt-
KOHTPAKTiB 3 METOI0 BHSBIICHHS TOTEHI[IHHUX BPa3JIMBOCTEH, MOMHIOK ¥

JIOT1IIi, @ TAaKOX TEepPEeBIpKa BiAMOBITHOCTI BUMOTaM.
JIOCSITHEHHSI METH JTOCITIJKCHHS Tiepea0ayae po3B’ I3aHHs TaKMX 3aB/IaHb:

e Orysi MOXKIMBOCTEH Ta TiepeBar BHKOPUCTaHHS OJIOKYCHHY Ta CMapT-
KOHTPAKTIB B OCBITHIN JiSTTHHOCTI.

e Bu3HaueHHS OCHOBHMX BHUMOT JIO CMapT-KOHTPAaKTiB OCBITHBOI
wiaropmMu Ta OI3HEC-TIPOIIECiB, $KI MOXYTh KEepyBaTUCA CMapT-
KOHTPaKTaMH.

e Bubip OmokueiiH muaTtdhopMu Ta IHCTPYMEHTIB JUIsl peasizallii cMmaprt-
KOHTPAKTIB.

e Peamizamis cMapT-KOHTpPakTiB Ha MOBiI mporpamyBanHs TEAL Ha

onokueitni Algorand.

® AHaii3 KOy CMapT-KOHTPAKTIB ISl BUSBICHHS MOXJIMBUX BPa3JIUBOCTEN

Ta XUOHOI ITOBEIIHKMH.

Hyoaikanii. O.B. CmiBakoBcekuit , M. O. Binnuk, M. [O.
[Tontopaupkuii, O. B. KonnoBa. K84 CniBakocbkuii O.B. KpuntoekoHoMika.
HaBu.- wmetox. moci6. / O.B. CmiBakoBcekuii, M.O. Biannk, M.IO.
ITontopaubkuii, O.B. KonHOBa. — XepcoH: XepCOHCBHKUH Jep:KaBHUU

yHiBepcutet, 2023. — 162 c.

OCHOBHUM 3MICT POBOTH

Y Berymi OOIpYHTOBAaHO aKTyaJIbHICTh TEMH, BHU3HAYEHO OO0 E€KT Ta
IpeIMeT JOCITIKCHHS, METY Ta 3aB/JIaHHS.

VY nepmomy posaini — “Overview of blockchain technology and the
possibilities of its use in education” (Ormsax TtexHosorii OJOKYeHH Ta
MOJKJTMBOCTEH ii BUKOPUCTAHHS B OCBIiTi) — OYJIO PO3TIISTHYTO MOHSTTS OJIOKYCHH
1 CMapT-KOHTpPaKTH. MU omucaly MPUHIUIIA POOOTH IMX TEXHOJIOTIH, a TaKOX
mepeBaru, sKi BOHM HaIalOTh. TakoX MH aHaJi3yBaIM MOMKJIIMBOCTI
BUKOPUCTaHHS OJIOKUEHHY Ta CMapT-KOHTPakTiB B OCBITI. OCHOBHI crocoOu
BUKOPHUCTAHHS OJIOKYEHHY B OCBITI:

e 30epiraHHs aKaJeMiYHHUX JTAHUX;

® CTBOPEHHS KypCiB 3 BUKOPHUCTAHHAM OJIOKYEHHY;

® CTUMYJIIOBaHHS CTYJACHTIB Ta BHUKJIAQNa4iB I OTPUMAaHHS Kpamlux
PE3YNbTATIB;

® 3axXKCT aBTOPCHKUX IPaB 1 aHTHUILJIATIAT.

Mu onmucanu TOKpaIeHHs, $AKi 11 TEXHOJOTii MOXYTh BHECTH B
HaBUYabHUI Tiporiec. Cepesl OCHOBHUX IEpeBar, siKi 1a€ BUKOPUCTAHHS CMapT-
KOHTPAKTIB Y HABYAIIBHOMY TIPOIIEC:

® ABTOMATH3allisl PYTHHHHX MPOIIECIB,;

® 3a0e3MeuYeHHs BHCOKOIO PIBHA JOBIpPM MIDK YYaCHHKaMHU OCBITHBOTO
MpoLECy;

® 3MEHIICHHS PU3UKY MOMUIIOK, TTOB'SI3aHUX 3 PYYHOIO TIpalelo;

® 3a0e3MeUeHHs] BUCOKOTO PiBHS 3aXHCTY.

Y npyromy posauii — “Determination of smart contract requirements
and selection of tools” (BusHaueHHs BHUMOT 10 CMapT-KOHTPAKTiB Ta BHOIp
IHCTPYMEHTIB) — OyJI0 BHU3HAYEHO OCHOBHI pOJII KOPUCTYBaudiB Ha OCBITHIN
mwiatdopmi Ta 1ii KoxkHOTO 3 HUX. CIiJ 3a3HAUMUTH, 1110 yBara Oyna mpualIeHa
TUM JIiSIM, SIKI PETYJIOBaTUMYTHCS CMapT-KOHTpakTaMH. J[OKJIagHO ONMHMCAaHO
IPOIIEC CTBOPEHHS Ta PO3MIILIEHHS KypCy Ha TaTdopmi.

Mu TakoX BU3HAYWIN MIATGOPMY Ta IHCTPYMEHTH JIsI pO3POOKH CMapT-
KOHTPAKTIB JJIi OCBITHBOI mMmiaTtdopmu. Takum YUHOM, y SIKOCTI OJIOKUEHH-
mwiatdopmu Oyno ob6pano Algorand. Mu posrisHynn 0CoOJHMBOCTI CMapT-
KOHTpakTiB Algorand, a Takox iX pI3HOBUIU: CMAapT-KOHTPAKTH 0e3 30epeKeHHs
Ta 31 30€peKEHHSIM CTaHy, a TAKO OCHOBHI BIIMIHHOCTI MK HUMHU. Hamu Oyio
PO3IJIIHYTO OCOOJMBOCTI MOBH TNPOTpaMyBaHHS JJsi PO3POOKHM CcMapT-
kourpaktiB Algorand - TEAL (Transaction Execution Approval Language).

VY 1tpetromy posaini — “Implementation and audit of smart contracts”
(Peanizariss Ta ayauT CMapT-KOHTPAKTIB) — HAMHU OYyJIO JETadbHO PO3TIISTHYTO
Ipollec peaizailii cMapT-KOHTPAKTIB 13 30epexkeHHsM ctany Ha TEAL Ta ix
B3a€EMOJII0 3 KIIEHTCBKUM JoaaTKoM 3a jgomomoror Algorand JS SDK.
OnucaHo CTPYKTYpY CMapT-KOHTPAKTIB Ta OCHOBHI METOJU iX poOoTH. Y X0l
poOOTH OyIO0 CTBOPEHO CMAapT-KOHTPAKTU HJisi YIPaBIiHHSA KypcaMu Ta
VIPABIIIHHS BUHATOPOJIAMH.

Honatox CourseManagement HEOOXITHUUN 7Sl YIpaBIiHHS OCHOBHUMH
mpoiiecaMu Ha IIAaTGOpMi, TOB'SI3AHUMH 3 KypCOM: CTBOPEHHSIM KypCy,
PO3paxyHKOM HOro BapTOCTi, PEECTpALI€I0 CTYAEHTIB Ha Kypc, 30€peKeHHSIM
0ayiB CTYACHTIB, PO3PaXyHKOM CYMHU CTUINEHAIl JUIsl CTYAEHTIB Ta BUHAropoau

st BukianadiB. CMapT-kKoHTpakT RewardsManagement KOHTPOJIIOE PO3MOJLI

BUHAropoJ cepesl KopuctyBayiB. BiH TakoX (QyHKLUIOHYE SIK PAXyHOK YMOBHOTO
JENOHYBAHHS.

Takox MU omMcanu OCHOBHI BPa3JUBOCTI, SIKI MOXYTh ICHYBAaTH y KO[i
CMapT-KOHTPakTiB, cTBopeHuXx Ha TEAL. Mu posriasHyiau OCHOBHI MiAXOIU
o010 BepHudikalii KOAy CMapT-KOHTPAKTIB. Y Wid poOOTI MU NepeBipUiIn
po3po0JieHI CMapT-KOHTPAaKTH Ha HAsSBHICTh OMUCAHUX BpazIUMBOCTEH. Mu
TaKOX BUKOPHUCTAJIU IHCTPYMEHT CTaTUYHOTO aHaJi3y KOAY CMapT-KOHTPAaKTIB

Ha TEAL — Tealer, sikuii 103B0JIsIE HAM ITYKAaTH BPa3JIMBOCTI Y KO/l KOHTPAKTY.

BUCHOBKH

VY 1iéi poOOTI MU PO3TIIHYJIN MOXJIMBOCTI BUKOPUCTAHHS OJIOKYEHHY Ta,
30KpeMa, CMapT-KOHTPAKTIB, B OCBITI. MU MpoaHadi3yBajiu OCOOJUBOCTI IHUX
TEXHOJIOT1H, a TAKOX IepeBary, ki BOHU HaJIal0Th.

e nmocnimxkeHHs OyJo 3AIMCHEHO JIS PO3TISAIY MPOIECy pPO3poOKHU
CMapT-KOHTPAKTIB ISl OCBITHROI IUIATGOPMHU Ha OCHOB1 OjokueiHy. Cmaprt-
KOHTPAKTH, 110 PO3POOJISIOTHCSA, TO3BOJISIIOTh KEpyBaTH IMPOLIECOM peecTparlii
CTYJICHTIB Ha Kypc, 30epiratu ix Oaim B OJOKYEHHI, PO3PaXOBYBATH PO3MIp
CTUTICHIIH /ISl CTYJIEHTIB Ta BUHATOPOJ IS BUKJIAadiB, a TAKOX PO3IMOALIATH
=111 (hIHAHCOBI BUHATOPOIM CEPe KOPUCTYBAYiB IJIaTHOPMHU.

VY xoxi Hamoi poOOTH MM BU3HAYWJIM OCHOBHI POJIi KOPUCTYBadiB Ha
OCBITHi# TuTaTopMi Ta A1l KOKHOTO 3 HUX, BUIUTUBIIY BapiaHTH BUKOPUCTAHHS,
K1 PEeTYJIIOIOTHCSA CMapT-KOHTPAKTAMHU.

Algorand GyB oOpanuii y siKocTi OJIOKUeHH-TIaThopMa sl pO3pOOKU
cMapT-KoHTpakTiB. lle omuH 3 HaWmMBHAMMX OJOKYCHHIB, SKHH Haaae
PO3IIMPEHI MOXKJIMBOCTI CTBOPEHHSI CMApPT-KOHTPAKTIB 3 HU3BKHUMH KOMICISIMH
3a TpaH3akilii. Y SKOCTI MOBH JJIA HAMUCaHHS KOJIY CMapT-KOHTPAKTY IS
ocBiTHROT matopmu Oyno oopano TEAL.

Mu pospobunu aBa cmapt-koHTpakTu: CourseManagement Ta

RewardsManagement. [lomatok CourseManagement ynpaBisie OCHOBHHUMH

mporiecaMd Ha TIatQopmi, TMOB'I3aHUMH 3 KYpCOM: CTBOPEHHSIM KYpCY,
PO3pPaxXyHKOM HMOT0 BapTOCTI, PEECTPAIIEI0 CTYACHTIB Ha Kypc, 30€pekKeHHSIM
OaJliB CTYACHTIB y OJOKYEIHI, pO3paXyHKOM CyMHU CTUIEHIi AJid CTY/ACHTIB Ta
BUHaropoau s BukiagadiB. [Iporpama RewardsManagement KoOHTpostO€
po3noni (iHAHCOBUX BUHArOpPOJ cepell KOpUCTyBauiB atgopmu. Bin Takox
(YHKIIOHYE K paXyHOK YMOBHOI'O JIEIOHYBaHHS.

VY wmiif poGoTi MU OmMCanu OCHOBHI BPa3jUBOCTI Y CMapT-KOHTPAaKTax,
Hanucanux MoBoto TEAL. Mu mnpoananizyBaiu NPUYUMHU iX BUHUKHEHHS Ta
MOKJIUBOCTI yCyHEHHs. P0o3p00iieH1 cMapT-KOHTPAKTH TaKOX MPOTECTYBAJIU Ha
HasIBHICTh OMUCAHUX BPa3IMBOCTEl. MU BUKOPUCTAIM IHCTPYMEHT CTATHYHOTO
aHamizy komy nisi cmapt-koHtpakTiB Ha TEAL — Tealer, axuii no3Bomsie

IIyKaTH Bpa?)JII/IBOCTi B KOJIi KOHTPAKTY.

LIST OF ABBREVIATIONS

P2P network — Peer-to-peer network

PoW — Proof of Work consensus mechanism

PoS — Proof of Stake consensus protocol

PPoS — Pure Proof-of-Stake consensus algorithm used by Algorand blockchain
AVM — Algorand Virtual Machine

ASA — Algorand Standart Asset

ASC — Algorand Smart Contract

DLT — Distributed Ledger Technology

TEAL — Transaction Execution Approval Language

SDK — Software Development Kit

10

CONTENT

LIST OF ABBREVIATIONSooii ettt e
INTRODUGCTION ...ttt et e e e st e e e e bae e e st e e e s bae e e s entaeeesareas
CHAPTER 1. Overview of blockchain technology and the possibilities of its

USE TN BAUCATION ..ottt ettt e et e e et eeeenaens
1.1 Blockchain and SMArt CONTIACTESuneeeee ettt e e e e e e e e e e e e e eeens
1.2 Analysis of blockchain use cases in dUCALIONcocuiieiiiiie i

CHAPTER 2. Determination of smart contract requirements and selection

(0] 0 (0T | 1RO PRR
2.1 Requirements for the educational platform and design ...,
2.2 Tools for smart contracts ImplemMENtatioNoovvieiiiiiiie e
CHAPTER 3. Implementation and audit of smart contractscccccceevviveeiiieeeeennen.
3.1 Implementation of smart contracts for the educational platformc...cccooeeiinenen.
3.2 Smart CONIaCtS COUE AUMIT......eiuvieiiieiiie ettt e e s
CONCLUSIONS .ottt e s st et e et esre e e beesbeeanbeenteennee e
REFERENGCES. e a e e e e e e e

11

INTRODUCTION

Online educational platforms began to appear quite a long time ago, but
they were almost not considered as an option to completely replace traditional
offline education in schools and universities. However, the Covid-19 pandemic
has completely changed this situation. Students began to study remotely and
there was a need for tools that could support this process. One of the main
advantages of online educational platforms is that they allow students to receive
quality education regardless of geographic location and physical access to
educational institutions. Therefore, not only schoolchildren or students, but also
working people who would like to learn a new specialty or improve their
qualifications can study at a time convenient for them.

The shift to online and distance education, the growth of educational
platforms and the increase in the amount of educational data pose serious
challenges such as data security, authentication, and financial management.
Blockchain can be a powerful tool to improve the reliability and security of
online learning platforms. It ensures data immutability, protects it from cyber
attacks, and ensures transparency and security for all system participants. This
can help build trust in online education and make it more accessible and reliable
for everyone. And one of the important components of the blockchain is smart
contracts.

Smart contracts open up new educational opportunities, turning traditional
learning systems into secure and transparent environments. However, with the
growing use of smart contracts in business process applications, there is a need
for security validation. Smart contracts are based on software code, so they can
contain errors that lead to incorrect execution of the contract. Since the area of
use of smart contracts is often related to finance, the cost of such errors can be
quite high.

Relevance of the study lies in the need to create reliable and secure smart

contracts to support the educational process, student registration, determining

12

their success, distribution of financial resources, and many other aspects of
education. Part of the aim of this project is to check the developed smart
contracts for wvulnerabilities, correct execution, and compliance with
specifications.

The topic of our work is within the scope of scientific research of the
Department of Computer Sciences and Software Engineering: "Cybersecurity
and Insertion Modeling” (Prof. V.S. Peschanenko) and "Cryptoeconomics and
Blockchain” (Prof. V.S. Peschanenko, Prof. V. M. Kobets).

Object of study — smart contracts for the educational platform.
Subject of study — the process of developing and auditing smart contracts.

The purpose of the study — development of smart contracts that regulate
the main business processes of the educational platform. Auditing smart
contracts to identify potential vulnerabilities, logic errors, and compliance

checks.
Achieving the purpose of the study involves solving the following tasks:

e An overview of the possibilities and advantages of using blockchain and
smart contracts in educational activities.

e Defining the basic requirements for smart contracts of the educational
platform and business processes that can be managed by smart contracts.

e Choosing a blockchain platform and tools for implementing smart
contracts.

e Implementation of smart contracts in the TEAL programming language
on the Algorand blockchain.

e Analysis of smart contract code to identify possible vulnerabilities and

misbehavior.

13

Research methods. The following methods were used to reach the
purposes of the study: informational and logical analysis, case study,

description, modeling, and experiment.

Publications. Spivakovs'kyy O.V., Vinnyk M. O., Poltorats'’kyy M. YU.,
Konnova O. V. Kryptoekonomika: navch.- metod. posib. Kherson:
Khersons'kyy derzhavnyy universytet, 2023. — 162 s. (Spivakovskyi O.V.,
Vinnyk M.O., Poltoratskyi M.Yu., Konnova O.V. Cryptoeconomics: Textbook.
Kherson: Kherson State University, 2023. — 162 p.)

KonnovaO., LetychevskyiO., PeschanenkoV., & PoltoratskyiM. (2024).
AN ALGEBRAIC APPROACH TO THE VERIFICATION OF SMART
CONTRACTS IN TEAL. Journal of Information Technologies in Education
(ITE), (54).

Structure of the study. The thesis consists of the list of abbreviations,

introduction, three chapters, conclusion, and list of sources.

14

CHAPTER 1

OVERVIEW OF BLOCKCHAIN TECHNOLOGY AND THE
POSSIBILITIES OF ITS USE IN EDUCATION

1.1 Blockchain and smart contracts

Blockchain has introduced many new opportunities to the world and
provided huge benefits through increased transparency, distributed ledgers and
decentralization. This technology was first described by a group of researchers
in 1991 and was put into practice only in 2008, when an unknown user under the
pseudonym Satoshi Nakamoto published a technical description of his
cryptocurrency protocol [1]. This technology has opened up new opportunities
to get rid of intermediaries and ensure a high level of security in many areas of

activity.
1.2.1 Blockchain

In the Cryptopedia glossary, the definition of blockchain is as follows “A
blockchain is a public ledger of transactions that is maintained and verified by a
decentralized, peer-to-peer (P2P) network of computers that adhere to a
consensus mechanism to confirm data. Each computer in a blockchain network
maintains its own copy of the shared record, making it nearly impossible for a
single computer to alter past transactions or for malicious actors to overwhelm
the network. Sufficiently decentralized blockchains do not rely on centralized
authorities or intermediaries to transact globally, securely, verifiably, and

quickly, making technology like cryptocurrency possible.” [2]
The blockchain concept has certain features:

e Decentralization: All data stored inside the blockchain does not belong to
one person. There is no single point of control or failure, which in turn

makes the blockchain more secure and resilient to attacks or data leakage.

15

e Transparency: All data stored on the blockchain is visible to everyone
who is part of the network. This simplifies the tracking and verification of

transactions and ensures their accuracy.

e Immutability: All data within the blockchain cannot be changed thanks to
the cryptographic hash function. This “creates a permanent record of all
transactions that can be verified by anyone with access to the blockchain

network” [3].

Data stored on the blockchain is secure and immutable, thanks to
cryptography. Each block is referenced by a unique character string generated
by a cryptographic hash function. Each block is linked to the previous block
(known as the parent block) by storing the parent's hash (Pic. 1.1). Therefore,
any changes made to the contents of a block will change the hash of the block.
Thus, falsifying data in any block of the blockchain will change the hash of all

subsequent blocks.

Genesis Block Block 1 Block 2
Previous hash: 0 Previous hash: Previous hash:
/ 0005f71l.... / 000d8ds5l...
Hash: Hash: Hash:
0005f7fg7kj69... 000d8d5lkvx5... 0004k4hj6f4a...

Pic. 1.1 — Link between blocks

In addition, all transactions in a block are verified and agreed upon by a
consensus mechanism, ensuring that every transaction is valid and accurate.

Therefore, the user cannot change transaction records.

16

A consensus algorithm is a mechanism that is used in blockchain systems
to agree on changes made to the distributed ledger. It ensures that none of the
network participants can arbitrarily add, delete, or change the data contained in

the registry.

At the moment, there are several consensus algorithms. The two most

common ones are:

e Proof-of-Work (PoW) requires the participant to prove that work has been
done and provide proof in the form of a puzzle solution. This proof gives
the node the right to add a block for the transaction to the blockchain.
Typically, a proof of work involves solving a mathematically complex
puzzle using cryptographic techniques. Whoever solves the puzzle first
gives the proof, and after that, the block will be added. This process is
called mining and requires large computing resources, i.e., a long
processing time and high-power consumption of computers. This
mechanism is used by Bitcoin and Dogecoin for their BTC and DOGE

currencies.

e Proof-of-Stake (PoS) requires the participating validator to have a certain
percentage of the stake in the network. It is believed that this node is
interested in maintaining the reliability of the network. This algorithm is
used by Cardano, Solana, and Avalanche for their ADA, SOL, and AVAX

currencies, respectively.

Other consensus algorithms include Delegated Proof-of-Stake, Proof-of-

Importance, Proof-of-Activity, Proof-of-Burn, Proof-of-Capacity and others.

e Advantages and disadvantages of blockchain

Considering the principle of operation of the blockchain as well as its

features, we can highlight the following advantages of this technology:

17

e Ensuring a high level of security: the three principles of blockchain —
cryptography, decentralization, and consensus — allow developers to
provide a secure system that is almost impossible to interfere with. Data is
also stored in blocks on the computers of many users. This reduces the
risk of hacker attacks as well as technical failures.

e Ensuring independence by eliminating intermediaries: in the blockchain
network, transactions occur without intermediaries, as well as third
parties; that is, the blockchain is not managed or controlled by a bank or
government, which means there is no possibility of interference in the
process.

e Ensuring transparency: blockchain transactions are typically public and
visible to all network participants. This provides a high level of
transparency and allows participants to verify and confirm transactions.

e Ability to create smart contracts: blockchain allows developers to create
smart contracts that are automatically executed when specified conditions
are met. This can simplify many business processes and make them more

transparent.

Along with a lot of advantages, blockchain technology still has some
limitations:

e Difficulty in changing data: Once data is added, it is quite difficult to
modify it. Although stability is considered an advantage of blockchain,
there are situations in which it can be a disadvantage.

e Limited scalability: public blockchains such as Bitcoin or Ethereum can
experience limited throughput and latency when the network is heavily
loaded.

e Lack of universal standards of legal regulation: many countries have not
yet defined clear norms and rules regarding the use of blockchain

technologies and cryptocurrencies. Also, smart contracts that function on

18

the blockchain may have legal significance, but laws do not always take
their specifics into account.

e Environmental issues: Some blockchains, especially Bitcoin, require
significant computing resources, resulting in serious carbon emissions and

environmental impacts.

1.2.2 Smart contracts

One of the main components of the blockchain are smart contracts. The
concept of smart contracts was first introduced by Nick Szabo in the 1990s.
However, they became widespread with the advent of the Ethereum platform,

the concept of which was described in 2013.

“Smart contracts are simply programs stored on a blockchain that run
when predetermined conditions are met. They typically are used to automate the
execution of an agreement so that all participants can be immediately certain of
the outcome, without any intermediary’s involvement or time loss.” [4] It is

thanks to smart contracts that the decentralized nature of the network is ensured.
Each smart contract has two components:

e Code: A set of rules and functions programmed into the contract. It
defines how the smart contract should be executed and under what
conditions. It defines the functionality of the smart contract and often
cannot be changed once it is added to the blockchain.

e State: A set of data and variables that are stored on the blockchain and
describe the current state of this contract. This may include account
balances, timestamps, other contract or account addresses, transaction

IDs, and other information.

Smart contracts are developed using programming languages. The choice

of a specific language depends on the selected blockchain. For example, the

19

Solidity and Vyper languages are used to develop smart contracts for the
Ethereum blockchain, and the Rust programming language is used for the
Solana, NEAR, or Polkadot blockchains. Other languages for developing smart
contracts include C++, JavaScript, Yul, Python, and others. Regardless of the
blockchain and programming language, the main goal of smart contracts is to
ensure the security and transparency of processes. That is why it is important
that the contract code does not contain vulnerabilities and is executed in

accordance with the requirements.

There are also several types of smart contracts:

e Smart Legal Contracts (SLC). These contracts combine legal logic with
the technicalities of blockchain and smart contracts to provide more
secure, reliable, and efficient agreements between parties. They are
legally binding and require the parties to fulfill their contractual
obligations. Smart legal contracts can be used to perform cryptocurrency
transactions as well as to register real estate or other applications. Such
smart contracts underlie DeFi projects, cryptocurrency exchanges, and
NFT marketplaces.

e Decentralized Autonomous Organizations (DAO). These are
organizations that are managed by smart contracts on the blockchain and
operate autonomously, without centralized control. The rules of the
organization and the rights of participants are encoded in smart contracts
that cannot be changed without the consent of other participants.

e Application Logic Contracts (ALC). ALCs contain application code that
enables communication between different devices. They allow interaction
and communication between different devices, for example, through the
integration of the Internet of Things (loT) with blockchain technology.
ALCs are an important component of multifunctional smart contracts and

mostly operate within a control program.

20

Smart contracts have huge potential in many areas of activity. They help
to automate many business processes, get rid of intermediaries in transactions,
and reduce the cost of human labor. The following main areas of use of smart
contracts can be highlighted:

e Cryptocurrency and Finance: Smart contracts are used to create and
manage cryptocurrencies and tokens.

e Real estate: Smart contracts can be used to automate the processes of
buying, selling, and renting real estate, as well as to store and manage
property documents.

e Medicine and healthcare: Smart contracts can be used to manage access to
medical data, medical prescriptions, etc.

e \oting: Smart contracts can ensure security and prevent vote fraud during

elections and voting.

Also, one of the main sectors where smart contracts can be useful is
education. Next, we will consider in more detail the possibilities of using
blockchain, and smart contracts in particular, in education. As well as the

benefits that this approach will bring to this area.

21

1.2 Analysis of blockchain use cases in education

Education in the classic form with offline classes in educational
institutions still remains the main approach to teaching, but the Covid-19
pandemic and the war in Ukraine have shown that online education can almost
completely replace offline classes at school or university. Online schools and
platforms for online courses are becoming an increasingly popular and
sometimes even necessary alternative to offline education. However, such online
educational platforms can also become a supplement and a good tool for already

existing educational institutions.

Traditional offline education at a school or university has many

advantages but also certain disadvantages:

e Geographic restrictions: Students must be physically located at the
university or school, which leads to restrictions in the choice of
educational institutions.

e High Costs: Traditional education can be expensive through fees for
courses, textbooks, accommodations and other expenses. Students also
spend time and money getting to university or school.

e Limited opportunities for individualization: Study groups in universities
and schools are usually quite large in terms of the number of students.
Because of this, it is difficult to ensure an individual approach to learning.

e |[nsufficient motivation of teachers: in ordinary schools and universities,
the salary level of teachers does not depend much on the quality of their
teaching, so teachers are not motivated to produce higher quality

educational content.

Many people choose the flexibility and accessibility of online education,

which is why online educational platforms are becoming increasingly popular.

22

And the technology that can significantly improve such online platforms is

blockchain.
1.2.1 Blockchain use cases in education

Blockchain can improve education by increasing transparency by
providing a decentralized and secure way to store, validate, and share
educational data. It is also important to remember about stimulating learning
through the use of tokenomic models with rewarding students for good results.
The online orientation of the blockchain is an important alternative to the
modern educational process in terms of not only platforms for online classes but
also effective and high-quality assessment, and document management with the

possibility of constant updating and improvement.

The main uses of blockchain in education are:

° Storage of academic records: blockchain can serve as a reliable
database, where academic achievements, certificates, diplomas, and
other qualifications can be saved. Storing student achievement data
on the blockchain allows employers and other stakeholders to
verify the authenticity and validity of these documents.

° Stimulating students and teachers for better results: incentive and
reward systems using tokenomics can help significantly improve
students' academic success rates. Teachers can use tokens to reward
their students in the online learning environment for completing
modules or other assignments. In addition, the gamification
component of learning methodology and tokenization could
significantly change the teaching and learning process.

° Creation of courses using the blockchain: blockchain can serve as a
basis for creating decentralized platforms for online learning where

experts and educators can provide their services. This allows

23

students and teachers to interact directly, minimizing intermediaries
and reducing the cost of access to education. Smart contracts can
verify the completion of tasks and distribute crypto tokens to
students and teachers.

° Copyright protection and anti-plagiarism: Blockchain can be used
to create systems that track and verify the originality of scientific
papers and educational materials, helping to fight plagiarism and

protect copyrights.

1.2.2 Literature review on the use of blockchain in education

The use of blockchain in education is still in its early stages: only a few
institutions are using this technology. The first blockchain technology in
education was officially used in 2017 at the University of Nicosia (UNIC),
which decided to modernize and simplify the process of storing any documents
on specialization (diploma, certificate, research paper). The University of Surrey
(UniS) developed the ARCHANGEL system, which is considered one of the
first projects in the field of education, created on the basis of distributed ledger
technology [5].

Opportunities and problems associated with the use of blockchain in
education are considered in the following works:

Yan Ma and Yiming Fang in the paper [6] comprehensively summarize
the recent applications of blockchain in education, especially those related to
learning records, certificate issuance and management, as well as a decentralized
educational ecosystem. Technical and non-technical problems of using
blockchain in education were also discussed.

The paper [7] studied the key factors that influence the decision of
educational institutions to use blockchain technology for e-learning. The authors

also proposed an extended model of the Technology Acceptance Model for the

24

implementation of blockchain technology in the educational process. As a result
of the study, the authors found that compatibility, trialability and relative
advantage have a significant impact on the use of DLT in an educational
Institution.

The main features and technical principles of the application of
blockchain technology are discussed in the work [8]. Han Sun and co-authors
also propose a solution to the problems of online education based on blockchain
technology. The article considers the possibility of a full recording of the
learning trajectory, trusted certification of learning results and decentralized
sharing of education resources.

The work [9] presents research and coverage of the experience of practical
use of blockchain technology in the education in Ukraine, in particular in the
sector of learning management systems. Among the possible options for using
blockchain in education, the author highlights the following: certification of
learning outcomes, accreditation of educational programs, security of learning
management systems, management of learning outcomes and rewards.

Special attention is paid to the use of smart contracts in education. The
paper [10] considers the possibility of creating a secure system based on smart
contracts for the examination system of a large university with a large number of
affiliated colleges. This article also analyzed various areas of smart contracts
and security issues. In the work [11] authors describe the education digital
authentication system based on blockchain technology with the use of smart
contracts. Using this authentication approach will help protect sensitive

information from unauthorized interference or data theft.

25

1.2.3 Advantages of using smart contracts in education

We can highlight the following benefits of using smart contracts in

education:

automation of routine processes, such as registration for courses, issuance
of certificates, testing, and other administrative tasks. This allows teachers
and students to pay more attention to the educational process.

the possibility of creating automatic regular payments for courses or
materials. This allows users to reduce payment processing costs and
ensures timely payment.

ensuring a high level of trust between participants in the educational
process, since operations are performed automatically in accordance with
the logic and conditions prescribed in the contract. The smart contract
code is open and any user can access it.

reducing the risk of errors associated with manual data entry due to
process automation using smart contracts.

providing a high level of protection due to the fact that the data in smart
contracts is cryptographically protected, which ensures reliability and

security.

Thus, the use of smart contracts can improve the quality and accessibility

of education, make most processes more rational, and provide more efficient and

convenient interaction between all participants in the educational process.

In this work, we will consider smart contracts for the educational

platform. They will regulate all processes on the platform, such as registration,

distribution of rewards for students and teachers, calculation of teacher rankings,

and so on.

26

Conclusions to the chapter:

In this section, we considered the concepts of blockchain and smart

contracts. We have described the principles of operation of these technologies as

well as the advantages they provide. We also analyzed the possibilities of using

blockchain and smart contracts in education. The main uses of blockchain in

education are:

Storage of academic records.
Stimulating students and teachers for better results.
Creation of courses using the blockchain.

Copyright protection and anti-plagiarism.

We have described the improvements that these technologies can bring to

the educational process. Among the main advantages that the use of smart

contracts brings to the educational process are:

Automation of routine processes.

Ensuring a high level of trust between participants in the
educational process.

Reducing the risk of errors associated with manual labor.

Providing a high level of protection

27

CHAPTER 2

DETERMINATION OF SMART CONTRACTS REQUIREMENTS AND
SELECTION OF TOOLS

2.1 Requirements for the smart contracts and design

2.1.1 Educational Platform

An online education platform is seen as “an integrated set of interactive
online services that provides the teachers, learners, parents information, tools,
and resources to support and enhance educational delivery and management.”
[12]

In this work, an educational blockchain-based platform using tokenomics
is considered. It will allow teachers, students, and other stakeholders to interact
to provide a better educational process, and will also stimulate them to be more
productive through the use of a system of incentives and rewards.

Teachers can create their courses and post them on the platform, students
can register for them and study, and employers can look for potential employees
among the best students. This way, each participant can benefit from the
interaction as well as be rewarded for their success.

The platform will use smart contracts to automatically record and save
student grades, ensuring their reliability and accessibility to all stakeholders, and
to distribute scholarships, salaries, and other types of financial rewards.

The model of education tokenization was described in more detail in the
work [13]. The formalization of the model was also done to find “modeling
errors, shortcomings or possible contradictions; search for effective system
scenarios” [13].

Next, we will consider the main roles of users on the platform, as well as

the interaction between them. This will allow us to identify and describe the

28

main processes and requirements for them, for the further creation of smart

contracts.

2.1.2 Definition of user roles on the platform
During the work on the platform design, we identified the following user
roles:
e Teacher — the user who can create and host educational courses on
the platform and evaluate students for completing courses.
e Student — the user who can choose courses and enroll in them by
paying a certain amount of money.
e Employer — the user who can access student performance
information. Also gets access to the chat for the opportunity to
discuss cooperation with the student. Thus, the employer can

choose a suitable candidate and offer him a job.

The principle of user interaction with the platform is presented in the
diagram (Pic. 2.1). User roles on the platform, as well as their main actions, are

presented in the Use Case diagram (Pic. 2.2).

Get scholarship for

- Get rewards
<€ 2t rewerd good results
for advertising
Teacher D P ere————
Get rewards for| Pay for the course
teaching the enrollment
course
v
Create and publish the course Educational
pay tokens for_) Platform
the registration
Student
4/\
Get rewards for
adverusng
pay tokens for the mv=atkon new users
‘o- access to students results
&
Employer

Pic. 2.1 — User interaction with the platform

29

Teacher

Employer

Pic. 2.2 — Users actions on the platform

Next, we will describe users™ actions on the platform in more detail.

Attention is paid to those use cases that will be handled by smart contracts.

30

Teacher:

e can create and host courses on the platform by paying a fixed fee to the
platform;

e can evaluate the student's achievements while studying. Evaluation can
occur at intervals determined by the teacher (for example, at the end of
each month);

e can invite other people to become users of the platform. The teacher will
receive a reward for this. The reward is given after the invitee registers for
the course with any teacher (for a student) or after creating his own course

(for a teacher).

Student:

e can choose the course on the platform and enroll in it. In this case, the
student must pay the course fee set by the teacher to the platform.

e can study course materials, participate in online classes, and take tests.
Depending on the student's performance during the course, the student
may receive a scholarship (based on his grades in the course).

e can also invite new users to the platform. The student will receive a
reward for this. The reward is given after the invitee registers for the
course with any teacher (for a student) or after creating his own course
(for a teacher).

e can take a survey on the platform and receive rewards for it. The survey
may concern a specific course that the student took (taken after
completion of the course) and the teacher who taught the course. And also
about the quality of the platform as a whole, the convenience of new

developments, and so on.

31

Employer:

e can register on the platform. In this case, the employer must pay an
appropriate fee to the platform. It depends on the number of staff of the
company or firm.

Company sizes are ranked:
1. Small: less than 50 employees;
2. Medium: from 50 to 249 employees;
3. Large: from 250 to several thousand employees.
e can pay tokens to be able to access student success information. Fee

amount is calculated by formula:

fee = (studentAmount*amountlmpactFactor) +
(teacherRating*ratinglmpactFactor) 1)
where:

o studentAmount — number of students enrolled in the course;
o amountlmpactFactor — coefficient that determines the influence of
the number of students on the fee size;
o teacherRating — Teacher’s Rating value on the platform;
o ratinglmpactFactor — coefficient that determines the influence of
the Rating value on the fee size;
Also gets access to the chat for the opportunity to discuss cooperation
with the student. If he wants to get the opportunity to communicate with
the student, he must pay the fee:
fee = studentScore*10 (2)
where

o studentScore — the student's current grade in this course.

32

e can order a teacher to create a course he needs to find a candidate for a
job or improve the qualifications of his employees. In this case, he must
pay a fee:
fee = teacherRating™(creationCourseFee+courseType) 3
where:

o teacherRating — Rating on the platform of the teacher who will
create the course;
o creationCourseFee — base fee for creating a course on the
platform;
o courseType — course type (will be described in more detail in the
section 2.1.3).
The funds are distributed as follows: 10% to the reserve, 90% to the
Reward account.
Considering the Rating value when calculating the fee value will allow
the employer to choose whether he wants to order a course at a higher
price, but from a teacher with a higher rating, or from a teacher with a
lower rating at a lower price. This will also encourage teachers to create

better courses to improve their Ratings.

Next, we will describe in more detail the processes that will be controlled

by smart contracts on the platform.

2.1.3 Course creation and publication on the platform

The main process of the educational platform is the creation of a course
by the teacher and its publication on the platform. As well as recruiting students
for the course, training, testing, and completing the course. Next, we provide a
more detailed description of this process on the educational platform that is

being developed:

1)

2)

3)

33

The teacher starts creating the course and indicates the basic information
about the course: name, description, duration (number of modules),
number of participants, type (asynchronous (without video materials, only
text materials and presentations), asynchronous (with teacher's video
materials), synchronous (online lessons via video conferencing)).
The system offers the teacher the optimal cost of the course depending on
the type, duration of the course and the rating of the teacher.
courseCost = (basicModuleCost*typeCoef*durationCoef*ratingCoef)*
moduleNumber 4
where:

e basicModuleCost — basic cost of one course module;

e typeCoef — coefficient for the course type;

e durationCoef — course duration coefficient;

e ratingCoef — coefficient that depends on the value of the teacher's
Rating on the platform;

e moduleNumber — number of modules in the course.

Automatic calculation of the course cost has the following advantages:

e Objectivity: Calculating costs based on specific factors such as
course type, length and teacher rating makes the cost setting process
more objective and reasonable.

e Stimulate improvement in teaching quality: Considering teacher
ratings when calculating the cost can incentivize teachers to

improve the quality of their courses and receive higher payment.

Next, the teacher clicks "Create course". At the same time, he must pay
the fee to the wallet of the platform. The transaction parameters (recipient
address, payment amount, etc.) are checked by the smart contract to

ensure that it is correct.

34

The process of creating a course by a teacher is described in detail in the
sequence diagram (Pic. 2.3).

4) The Student enrolls in the course. At the same time, the smart contract
checks whether the course is still available for recording. If yes then the
student must pay the cost of the course for at least the first module (10%
of the funds go to the reserve, the remaining funds go to the Reward
Account).

The cost of one module is calculated using the formula:
moduleCost = courseCost/ moduleNumber (5)
where:

e courseCost — cost of the entire course, calculated when it was created by
formula (4);

e moduleNumber — number of modules in the course.

The process of registering a student for a course is described in detail in the
sequence diagram (Pic. 2.4).
5) Testing takes place at the time set by the teacher (for example, at the end

of each month). In accordance with the scores received, students are
awarded a scholarship to their account (from the Reward Account).
Student success level coefficients:

1. Excellent —10

2. Good — 8

3. NotBad — 6

4. Bad —4

5. VeryBad — 2

Thus, the amount of the scholarship for the student is calculated using the
following formula (2):
scholarship= moduleCost*successCoef (6)

where:
e moduleCost — the price for one module of the course. Calculated by

formula (5);

35

e successCoef — student success level coefficient.

The current score of the student and the amount of his scholarship are
stored in the Blockchain.

The advantage of storing scores on the blockchain is that this technology is
a reliable mechanism that guarantees the integrity and objectivity of the data.
Therefore, scores stored on the blockchain cannot be changed or falsified. This
approach also helps to simplify administrative processes and reduce
bureaucracy.

6) The teacher will receive a monthly payment from the Reward account in
the amount which is calculated by next formula:
teacherReward = countStudent*moduleCost*0.9 (7)
where:

e countStudent — number of students who have registered for this
Ccourse;
e moduleCost — the price for one module of the course.

7) At the end of the course, students leave feedback about the teacher. Based
on their assessment, the teacher’s Rating on the platform is recalculated.
When recalculating the Rating, the type of course and duration are also
considered.

8) Students also receive the reward for giving feedback.

The full process from course creation to completion is shown in the diagram
(Pic. 2.5).
It is worth noting that payments on the platform will be made using the

platform’s own token, which will be implemented as an Algorand standard asset

[14]

Teacher

mm] Aigorand Agorand Rewads

T
Course creation request

create
CourseManagement
application

create Algorand
application

application id

application id

calculate

T
call CourseManagement application to &
ourse price

calculate course price

course price
set course

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| price
|

|

:

+

create course confirmation
request
|

e e

Teacher's

call CourseM anage‘menl application] check
balance

transaction

confirm transaction

[transaction is valid] |

confirmation request

/:T_ L

1
transaction is valid

transacfion
confirmation request

transfer course creation fee

|
|
............... e i e b
| | |
N _l __________ i |
: [sufficient balance message I
create	
paymenttxn	
] + g	
	check payment transaction D checkten
! ! ! parametrs	
af [tfransaction is not vz'lid} : : :	
i ST N S TR	
L transaction is not valid response :	
: < ______________________	
Ermror message : I	
'	
ol	In 4
1	
:	
I	
I

_ T

Pic. 2.3 — Course creation by Teacher

36

nt's lucational Algorand Rewards
Student T T T
| | | |
| | | |
! l |
choose the course and |
start registration |
i ek :) check if registration
| % eF openness 9 for the course is open
| registration request
Elid

[OpenForEnroIImenl; ==0]

.<_ ___________

course is closed
message

N
|
|
|
|
|
|
|
|
|
|

transaction

|
|
|
‘ 1
[OpenForEnrolimen] == 1] :
| |
| =]
: (course is open T
< | message |
fee paymént request : :
'
I I I
t g |
start payment process |
I B heck g
| check student's check student’s
: balance request balance
I
Bl =]
a [balance < requiregdBalance]
I ____________
| insufficient balance
- —— - L L message
insufficient balance message :
[(IS S
[else] : |
| sufficient balance
: message
: create payment
| txn
|
I
check txn
check payment
: pay Dparametrs

EL [transaction is n?t valid]

Ermror message

transaction is not
valid response

[transaction is vjlid]
|

‘7

transaction
confirmation request

confirm transaction

transaction
confiation request

e

transaction is
valid response

transfer course enroliment fee

— e ———}

|
|
|
|
|
|
|
|
|
|
I
|
|
I
|
T
|
|
|
|

Pic. 2.4 — Process of student registration for a course

37

Pic. 2.5 — Educational platform flow diagram

38

39

2.2 Tools for smart contracts implementation

In this section, we will consider the tools that will be used to develop
smart contracts for the educational platform.

As a blockchain for the implementation of the educational platform, we
have chosen Algorand [15]. It was introduced in 2017 by MIT professor Silvio
Micali [16]. Algorand is a high performance blockchain platform with fast and
low-cost transactions powered by its own consensus algorithm — Pure Proof-of-
Stake (PPoS). It uses its own virtual machine Algorand Virtual Machine
(AVM). This blockchain supports smart contracts, decentralized applications,

and the issuance of digital assets. Algorand uses its native cryptocurrency Algo.

2.2.1 Algorand Smart Contracts

Algorand Smart Contracts (ASC1) are small programs that perform
various functions on the blockchain and operate at layer 1 [17]. Algorand
supports two types of smart contracts: stateful and stateless (smart signatures).
Stateful smart contracts allow us to store data in global and local storage. Also,
the contract code is stored on the blockchain network and can be viewed at any
time. The smart contract itself, after being deployed on the network, is called an
application and has its own id. The smart signature is sent to the blockchain with
the transaction. Its logic accepts or rejects the transaction.

The main differences between smart contracts and smart signatures in

Algorand are listed below in Table 2.2.

Table 2.2

Difference between smart signatures and smart contracts in Algorand

Blockchain

Smart signatures

Smart contacts

Purpose of use

Have two wuse cases:

signature authority
delegation and contract

accounts (escrow account)

Used to create complex
decentralized applications
that can manage assets,
perform fund transfers,
verify transaction

parameters etc.

Principle of

operation

As delegated authority:
As escrow account: the
compiled program has its
own unique address and
can function as an
Algorand account. Users
can transfer funds to it, as

well as withdraw

The

application call transaction

user creates an
and sends it to the network.
The corresponding smart
contract code processes the
transaction, either

accepting or rejecting it

Access to network
data

Does not have access to
information about blocks

and transactions

Smart contracts are
executed on the blockchain,
have access to transaction
information and blockchain
state such as balances and

contract state

Complexity

Small-sized programs of

low complexity

Programs of high

complexity, may contain

41

branches, loops, conditional

statements, etc.

Size 1000 bytes 1 kb

Thus, smart contracts are aimed at automating complex agreements and
operations, while smart signatures are aimed at ensuring the secure execution of

transactions on the Algorand network.

2.2.2 TEAL as language for Algorand Smart Contracts

Smart contracts and smart signatures for the Algorand blockchain are
written in the language that is called TEAL (Transaction Execution Approval
Language). It is a low-level, assembly-like language that is interpreted by the
Algorand Virtual Machine (AVM) [17]. TEAL programs are processed line by
line, pushing and popping values on the stack. TEAL supports a limited set of
data types. These can be bytes or unsigned 64-bit integers. TEAL provides a set
of operators that operate on those values on the stack [18]. TEAL has more
limited potential functionality such as no support for recursive logic, however
this makes smart contracts safer to write and execute.

A smart contract written in TEAL can be compared to a class in object-
oriented programming. Then the application that is created and resides on the
blockchain can be compared to an instance of a class.

As we already mentioned, TEAL is a stack-based language. This means
that the program processes all actions requested by the transaction from which it
was called if and only if the last value on the stack is 1. If so, the TEAL program
returns true, and the transaction is processed. For every other value left on the
stack, false is returned and the transaction will fail [18].

TEAL is a restricted computing language. It is designed to perform simple

checks on the status of a transaction, not complex calculations.

42

Each operation in the TEAL program has an associated cost that counts
towards the total cost of executing the program. Smart contracts are given a total
opcode budget of 700. If the program exceeds this budget, the application call
will fail. This approach allows the Algorand blockchain to set a fixed fee per
application call, rather than charging a fee based on the computational cost of

calling a smart contract.

2.2.3 Algorand JS SDK
For interaction of the platform with the Algorand blockchain, Algorand JS
SDK is used. The Algorand JavaScript Software Development Kit [19] is a set
of tools, libraries and functions that help developers interact with the Algorand

blockchain network using the JavaScript programming language.

This SDK provides the following key functionalities for interaction with
the blockchain:

e Account creation and management. Algorand is an account based
blockchain platform. The SDK provides tools for creating and managing
accounts on the Algorand blockchain. SDK also allows users to get
information about the account (balance, account assets, etc.)

e Transaction creation. SDK allows users to create transactions and send
them to the Algorand network. These can be transactions of transferring
funds to other accounts, making applications (smart contracts) calls and
others.

e |Interaction with smart contracts. SDK makes it possible to create
applications, trigger smart contract methods, pass arguments to the
application, and so on. This is done using the application creation and
application call transactions.

e Getting information about the current state of the blockchain. The SDK

can be used to obtain information about the current state of the Algorand

43

blockchain, including information about blocks, transactions, and

accounts.

In the next section we will look in detail at the features of developing

smart contracts on the Algorand blockchain using the TEAL language.

Conclusions to the chapter:

In this section, we defined the main roles of users on the educational
platform and the actions of each of them. It should be noted that attention was
paid to those actions that will be regulated by smart contracts. The process of
creating and placing a course on the platform was described in detail.

We have also defined the platform and tools for developing smart
contracts for the educational platform. Thus, Algorand was chosen as the
blockchain platform. We considered the features of Algorand smart contracts, as
well as their varieties: stateless and stateful smart contracts, and the main
differences between them. We considered the features of the programming
language for the development of Algorand smart contracts — TEAL
(Transaction Execution Approval Language) — low-level, assembly-like

language.

44

CHAPTER 3

IMPLEMENTATION AND AUDIT OF SMART CONTRACTS

3.1 Implementation of smart contracts for the educational

platform

In this section, we will take a detailed look at the process of creating
smart contracts and sending them to the network. We will also describe the
process of auditing smart contract code for the educational platform.

In the process of developing smart contracts, the following main stages
can be distinguished:

1. Define, document and analyze the requirements for smart contracts that
need to be developed.

2. Writing smart contracts code.

3. Verification of smart contract code using special tools.

4. Correcting errors and eliminating vulnerabilities discovered during code
verification.

5. Testing the correct execution of smart contracts.

6. Deployment of smart contracts in the blockchain network.

3.1.1 Development of the Smart contract for course management
Now we will look at the implementation of the stateful smart contracts
and their interaction with the client application through the SDK. In this project,
we will use JavaScript SDK for Algorand.
The Smart Contracts code consists of the ApprovalProgram and the
ClearStateProgram.
e ApprovalProgram code defines the logic and conditions for approving or
rejecting transactions that trigger a contract.
e ClearStateProgram code is used to define the logic that is executed at the

end of the contract's lifecycle.

45

In the ApprovalProgram, we define variables that will be stored in global
storage. It should also be noted that the global state of stateful smart contract is
limited to 64 key-value pairs, and the local state is limited to 16 key-value pairs
for each individual account that interacts with it. The size of each key/value pair
is limited to 128 bytes.

CourseManagement Application will regulate the basic processes of

creating and managing courses.
create_course
check_teacher_payment

calculate_price

CourseManagement
Smart Contract student_registration

check_student_payment

calculate_teacher_reward

calculate_scholarship

Pic. 3.1 — CourseManagement application methods

Next, we specify the key-value-pairs that the CourseManagement
application contains in its global and local storages.
Global State Schema for CourseManagement Application:
e CourseTitle — the course name specified by the teacher during course
creation.
e Type — type of course: asynchronous (without video, only text materials,

presentations, etc.), asynchronous (with video materials from the teacher),

46

synchronous (online video lessons with students). Also specified by the
teacher during course creation.

e ModulesNumber — number of the modules in the course.

e EnrollmentLimit — maximum number of students who can enroll in a
course.

e OpenForEnrollment — indicates whether the course is available for
enrollment of new students. The value is checked when new students are
recruited (1 — registration is open, 0 — registration is closed).

e EnrolledStudentsNumber — number of students who have enrolled in the
course.

e CoursePrice — the cost a student must pay to take a course.

e TypeCoefficient — coefficient, which depends on the project type. It is
used when calculating project cost.

e DurationCoefficient — coefficient, which depends on the project
duration. It is also used when calculating project cost.

e RatingCoefficient — coefficient, which depends on the Teacher's Rating

value.

Local State Schema for CourseManagement Application:
e CurrentScore — the current value of the student's success results. The
indicator is used to calculate the amount of the student's scholarship.
e Scholarship — the current amount of scholarship that the student will
receive per month.

It's worth noting that these schemas are immutable after creation.

e Minimum balance requirements
Creating new applications increases the minimum account balance

requirements. This minimum balance is necessary to cover the storage cost for

47

the TEAL application state, which includes the storage of global and local
variables, as well as any other data associated with the application.

Global storage is actually stored in the creator account, so that account is
responsible for the global storage minimum balance.

The minimum balance increases with each asset contained in the account
(regardless of whether the asset was created or owned by the account), and with
each application created or registered in the account. The minimum balance
requirement is reduced when the application created by this account is removed
from the network.

Thus, when creating this application, the minimum balance requirements
for the account that creates it will increase as follows:

e 100,000 microAlgos — base fee for each page requested.
e 25,000 + 3,500 = 28,500 for each Uint variable in the global storage =

10*28 500 = 285 000 microAlgos.

The creator of the Application would have its minimum balance raised by
385 500 microAlgos = 0.3855 Algo.

Algorand smart contracts interact with the backend of the platform using
transactions and application calls. Application calls allow external entities to
invoke specific functions or methods defined within the smart contract. These
calls can pass arguments, trigger specific actions or calculations within the

contract, and return results or updated state.

e Application Creation
We define global storage variables when creating an application. In TEAL

code this happens as follows:

OO0 Jo U WD

Listing 3.1 — Definition of global variables during application creation

#pragma version 6

//If app id == 0, must be creation call

txn ApplicationID
int O

bz not creation

byte "CourseTitle"
txna ApplicationArgs 0
app _global put

byte "Type"
txna ApplicationArgs 1
app global put

byte "ModulesNumber"
txna ApplicationArgs 2
btoi

app global put

byte "EnrollmentLimit"
txna ApplicationArgs 3
btoi

app global put

byte "EnrolledStudentsNumber"
int O
app global put

byte "OpenForEnrollment"
int 1
app global put

byte "CoursePrice"
int O
app global put

byte "TeacherRating"
txna ApplicationArgs 4
btoi

app global put

byte "TypeCoefficient "
int O

app global put

byte "DurationCoefficient"
int O
app_global put

byte "RatingCoefficient"
int O
app_global put

b done

48

49

Thus, at the beginning we check that ApplicationID is 0. If this statement
IS correct, then we move on to the part of the code that is responsible for
creating the Application and allocating global state variables.

In this code snippet, the values of the "CourseTitle", "Type",
"ModulesNumber”, "EnrollmentLimit”, "CoursePrice” and "TeacherRating"
variables are set by the application creator as arguments when creating the
CourseManagement Application. When creating the application, we set the
value of the "OpenForEnrollment"” variable to 1. This means that the course is
open for student enrollment. "EnrolledStudentsNumber" variable default value
is 0. The default values of the coefficient variables are also set to 0.

After that, we move to a label called “done”, which will return and

approve the application creation transaction.

e ApplicationCall transactions

From the backend, we construct an application call transaction using the
Algorand SDK.
There are several types of ApplicationCall transactions:

e NoOp: the most used transaction type. It allows the developer to make
application calls to execute the ApprovalProgram.

e Optln: this transaction allows the user to start participating in the smart
contract (application). Allows the user to use the application's local state.

e DeleteApplication: this operation is used to remove a smart contract
(application) from the Algorand network blockchain. Once this
transaction is completed, the smart contract will no longer be available.

e UpdateApplication: this transaction allows the creator to make changes to
the code, parameters, or other aspects of the smart contract after it has
been deployed. This can be useful in cases where the contract needs to be
updated or modified to fix bugs, ensure security, or extend the

functionality of the contract.

50

e CloseOut: with this transaction the user can stop using the application.
This will lead to removing the application's local state from the user
account.

e ClearState: this transaction allows the user to clear the local state of the

application, even if the application was deleted by the creator.

All transaction types except DeleteApplication are part of the
ApprovalProgram. In our contract, we check the transaction type and jump to
the appropriate branch depending on the type. Next, we are giving the snippet of

TEAL code for jumping between program branches:
txn OnCompletion

int Optln

bnz handle optin

txn OnCompletion

int NoOp

O O J o O b w N

bnz handle noop

Listing 3.2 — Jumping between program branches

Operation “bnz target” — jump to TARGET if the last element of the
stack is non-zero.

“handle optin” branch is called when the ApplicationCall type is Optln.
This occurs when the student enrolls in the course since the user account that
wants to use its local state for the application must subscribe to the smart

contract.

O J o U W N

W w w w w NSNS PR RO
W N PO O 0 do0y O WDNDE O W OoWw Joy O WD P O

35

handle optin:
byte "OpenForEnrollment"
int 1

bz failed

int O

byte "CurrentScore"
int O

app_ local put

int O

byte "Scholarship"
int O

app local put

byte "EnrolledStudentsNumber"
app global get

int 1

+

dup

store O

byte "EnrolledStudentsNumber"
load O

app global put

byte "EnrolledStudentsNumber"
app global get

store 1

byte "EnrollmentLimit"

app global get

load 1

bnz close enrollment
b done

Listing 3.3 — OptIn ApplicationCall branch

o1

In this snippet, we check if there are places available to enroll in the

course (OpenForEnrollment == 1), allocate variables "CurrentScore" and

52

"Scholarship"” and initialize them with default values. We also increment the
value of the "EnrolledStudentsNumber" variable and check if the course is
closed for enrollment of new students (EnrolledStudentsNumber ==
EnrollmentLimit). Then we set the “OpenForEnrollment” value to 0.

NoOp type of the ApplicationCall transactions forms the main part of the
smart contract Approval program. The CourseManagement Application contains
6 methods that can be executed depending on the argument passed to the
transaction:

1) set_coefficient: method for setting course coefficient values depending on
its type, duration and Teacher rating. AppCall transaction argument —
"SetCoefficient™" of byte type.

2) calculate_price: course price calculation method. AppCall transaction
argument — "CalculateCoursePrice™ of byte type.

3) evaluate_student: method that is called when the teacher evaluates the
student. AppCall transaction argument — "EvaluateStudent™ of byte type.

4) calculate_teacher_reward — teacher reward amount calculation method.
AppCall transaction argument — "CalculateTeacherReward" of byte type.

5) check_teacher_payment: method that is called when it is necessary to
verify the validity of the transaction created when a teacher pays a
commission to the platform for creating the course. AppCall transaction
argument — "CheckTeacherPayment" of byte type.

6) check student_payment: method that is called when it is necessary to
verify the validity of the transaction created when a student pays a
commission to the platform for enrolling in the course. AppCall

transaction argument — "CheckStudentPayment™ of byte type.

The following is a “handle noop” snippet:

0

the previous section) using the TEAL code as follows:

O J o U b W N

I I R e N e e e T e e S Vo)
N B O W oo Jdo Ul d WNEFE O

23

handle noop:
txna ApplicationArgs O
byte "CalculateCoursePrice"

bnz calculate price with coef

txna ApplicationArgs O
byte "EvaluateStudent"

bnz evaluate student

err

Listing 3.4 — NoOp ApplicationCall branch

53

The cost of the course is calculated (according to formula (4), described in

calculate price:

byte "TypeCoefficient”
app global put

int 100

*

dup

store O

byte "DurationCoefficient"

app global get
load O

*

dup

store 1

byte "RatingCoefficient"
app global get
load 1

*

dup

store 2

byte "CoursePrice"
load 2
app_global put

b done

54

Listing 3.5 — Course cost calculation

To validate a payment transaction, we can use Algorand's atomic
transactions, which allows multiple transactions to be sent at the same time, and
If any of the transactions fail, then they all fail. To check the parameters of
payment transactions created in the JS SDK, we can group this transaction with
the stateful smart contract call and send them simultaneously. In TEAL we

check values of the transaction in the group as follows:

1 check teacher payment:
2 global GroupSize

3 int 2

4 ==

5 assert

6

7 gtxn 0 AssetAmount
8 int 50

9 ==

10 assert

11

12 gtxn 0 XferAsset

13 int 106326517

14 ==

15 assert

16

17 gtxn 0 AssetReceiver

18 addr
2ERPXALR7IESFS6FWX45CDA47Z3447SPNMCOYQHF2UXOXRRNLXS5KZAMT4DT

19 ==

20 assert

21

22 gtxn 0 RekeyTo

23 global ZeroAddress

24 ==

25 assert

26 Db done

Listing 3.6 — Checking payment transaction parameters

In this example, we checked the parameters of the transaction that is

created when a teacher pays a commission to the platform for creating a course.

55

We checked that the transaction amount is equal to the established commission
amount, the address of the recipient of the funds is the platform address, and the
asset ID corresponds to the platform token id that is used for payment.

In the backend, we can analyze the transaction result to determine if the
smart contract executed successfully and to extract any relevant data or state
changes resulting from the contract's execution.

When a teacher evaluates a student, the student's score is saved in the
application's local state. The amount of the scholarship for a given student is
also calculated. The scholarship is paid to the student from the Rewards account.
Thus, the CourseManagement smart contract must make an inner transaction
call to the application, which is responsible for distributing rewards (it is also an
escrow account).

Calculation of the amount of the student's scholarship according to the

formula (6) on the TEAL code is as follows:

1 calculate scholarship:
2 byte "CoursePrice"
3 app global get

4 store O

5 load O

6 byte "ModulesNumber"
7 app global get

8 /

9 dup

10 store 1

11 int O

12 Dbyte "CurrentScore"
13 app local get

14 load 1

15 *

16 dup

17 store 2

18 int O

19 Dbyte "Scholarship"
20 load 2

21 app_local put

56

Listing 3.7 — Calculation of student scholarship amount
Creating the inner transaction to call the Rewards application from

CourseManagement smart contract is done as follows:

//call reward smart contract

1 itxn begin

2

3 int appl

4 itxn field TypeEnum

5

6 txn Applications 1

7 itxn field ApplicationID

8

9 int NoOp

10 itxn field OnCompletion

11

12 byte "PayStudentScholarship"
13 itxn field ApplicationArgs
14

15 int O

16 Dbyte "Scholarship"

17 app local get

18 itxn field ApplicationArgs
19

20 itxn submit

21 b done

Listing 3.8 — Inner transaction to call the Rewards application

As arguments when calling the Rewards application, we pass the name of
the method that needs to be called in the smart contract, and the amount of the
scholarship that needs to be paid to the student.

In this example, we are calling one smart contract from another. It should
be noted that “Contract-to-Contract Calling” has some features and limitations
[31]:

e Contract A can call Contract B, which calls Contract C, etc., but call
depth is limited to 8.

57

e The number of inner transactions is limited to 256 per transaction group.
This includes both the inner transaction of contract A that calls contract B,
and those inner transactions that contract B can execute.

e The fee for inner transactions, as well as for any other transactions in
Algorand, is 0.01 Algo. If smart contract A makes a call to smart
contracts B and C, the commission amount will be equal to 0.3 Algo.

e Smart contract A cannot make a call to smart contract B if its code
contains a call to smart contract A. This is done in order to avoid “re-

entrancy” vulnerability.

When the application is being deleted, the handle deleteapp method is

triggered.

=

handle deleteapp:
txn Sender
global CreatorAddress

bz failed

failed:
int O
return

O 00 J o U b W N

Listing 3.9 — DeleteApplication ApplicationCall branch

If the transaction sender address does not match the application creator
address, the application call will fail. This approach allows only the app creator,
such as the course creator, to delete the application. The smart contract logic

will reject the DeleteApplication transaction if it is submitted by any other user.

58

3.1.2 Development of the Smart contract for rewards distribution

The Reward account will be implemented as a smart contract. Once
deployed, the smart contract has its own address and can function as an escrow
account.

An escrow account is an account in which funds are locked until some
predetermined event occurs or a certain set of conditions are met. The conditions
that determine when funds must be sent are encoded and thus enforced by the
logic of the contract account itself. This eliminates the need for a centralized
authority to determine whether a condition has been met and then moderate the
transaction [20].

Thus, all payments from users will be credited to this account. Next, the
smart contract will have methods for creating inner transactions for paying

scholarships to students and awards to teachers.
pay_invitation_reward

_ pay_advertising_reward

RewardsManagement

&<
Smart Contract pay teacher_reward

. pay_student_scholarship

pay_survey_reward

Pic. 3.3 — RewardsManagement smart contract methods

e Reward payment for inviting a new participant

When an already registered user invites a new user to the platform, and the

latter enrolls in any course (student) or creates his own course (teacher), the

59

inviting user can receive a fixed reward. Then the RewardsManagement smart

contract is called, in which the pay invitation reward method is triggered.

1 pay invitation reward:
2 itxn begin

3

4 int axfer

5 itxn field TypeEnum

6

7 int 106326517

8 itxn field XferAsset

9

10 txn Accounts 1

11 itxn field AssetReceiver
12

13 int 20

14 itxn field AssetAmount
15

16 int O

17 itxn field Fee

18

19 itxn submit

Listing 3.10 — Inner transaction for paying rewards to users for inviting a

New user

This method creates the inner transaction that transfers a fixed amount of

the asset from the Rewards account to the user's account.

The parameters of this transaction are: the type of transaction (in this case,
it iIs axfer — asset transfer transactions), the id of the asset being transferred
(106326517 — id of the platform payment token), the address of the recipient
of the asset (txn Accounts 1 — the address is passed as an argument to the
application call transaction in Algorand JS SDK), the amount of the asset being

transferred.

e Payment of the students scholarship
When the student's scholarship amount is calculated in the

CourseManagement application, it creates the inner transaction that makes a call

60

to the RewardsManagement application and triggers the

pay student scholarship method.

1 pay student scholarship:
2 itxn begin

3

4 int axfer

5 itxn field TypeEnum

6

7 int 106326517

8 itxn field XferAsset

9

10 txn Accounts 1

11 itxn field AssetReceiver
12

13 txna ApplicationArgs 1
14 itxn field AssetAmount
15

16 itxn submit

17

18 b done

Listing 3.11 — Inner transaction to pay the scholarship to the student

3.1.3 Creating test accounts
In order to be able to create an application on the Algorand network and
interact with a smart contract, we need to have test accounts that must have a
certain amount of Algo on their balance in order to be able to pay transaction
fees. It is possible to create such a test account using Algorand SDK with the

following code:

const generatedAccount = algosdk.generateAccount();
const passphrase =
algosdk.secretKeyToMnemonic (generatedAccount.sk) ;

Listing 3.12 — Creating an account using algosdk

To finance a test wallet, we can transfer funds from another funded wallet

or use the Algorand dispenser [21].

61

To make it easier to test smart contracts on the Testnet, we can use the
private account key for an Algorand account to retrieve account information
from the blockchain or sign transactions. To work with assets on the Mainnet, it
IS necessary to create an account using a trusted wallet, for example Pera wallet
[22] for Algorand. This will allow users to manage their accounts and assets
safely and correctly. Since the platform being developed will use its own token,
it is also necessary to set up accounts for this asset.

To be able to receive an Algorand asset, the user must “opt-in” to receive
it by sending a 0 amount of the ASA to himself (to the account that will receive
the asset). This approach protects users from spam assets, preventing unknown
assets or assets that are not whitelisted from being sent to the user without his

approval.

3.1.4 Deployment of smart contracts
To test smart contracts, we can use the Algorand test network — Testnet.
In it developers can perform the same operations as in the real network (create
own assets, transfer funds, create and call applications, etc.), but without having
to spend real Algos and pay transaction fees.
Once deployed, the instance of the smart contract on the network is called
an application and is given an application ID. Additionally, every smart contract

has a unique Algorand address that is generated from this specific ID.
e CourseManagement SC

To deploy the CourseManagement smart contract in the network,

makeApplicationCreateTxn is created:

const arg0 = Encodeuint8arr ('CourseTitle');
const argl = Encodeuint8arr ('Asynchronous with wvideo
material');

const arg? algosdk.encodeUint64 (3); //ModulesNumber
const arg3 algosdk.encodeUint64 (20); //EnrollmentLimit
const arg4 = algosdk.encodeUint64 (teacherRating);

62

const from =
"2ERPXALRT7IESFS6FWX45CDA4723447SPNMC6YQHF2UXOXRRNLXS5KZAMTADI" ;
const onComplete = algosdk.OnApplicationComplete.NoOpOC;

const approvalProgram = await
getBasicProgramBytes ('CreateCourse.teal');
const clearProgram = await

getBasicProgramBytes ('clear.teal');

//txn params

const numLocalInts = 3;

const numLocalByteSlices = 0; //The numLocalByteSlices variable is set
to 0, indicating that there are no local byte slice variables required for the smart contract.

const numGlobalInts = 10; // The numGlobalints variable is set to 10,
indicating that the smart contract requires 10 global integer variables.

const numGlobalByteSlices = 2;

const appArgs = [arg0, argl, arg2, arg3, arg4d]; //TheappArgs
variable is an array that contains the arguments to be passed to the smart contract during the
application call.

// get suggested params

const suggestedParams = await
algodClient.getTransactionParams () .do () ;

// create the application creation transaction
const createTxn = algosdk.makeApplicationCreateTxn (
from,
suggestedParams,
onComplete,
approvalProgram,
clearProgram,
numLocalInts,
numLocalByteSlices,
numGloballInts,
numGlobalByteSlices,
appArgs
) ;

// send the transaction
const signedCreateTxn = createTxn.signTxn (system.sk);
const { txId: createTxId } = await algodClient
.sendRawTransaction (signedCreateTxn)
.do ()

Listing 3.13 — Creating a create application transaction

63

The function returns the ID of the created application. Next, the ID is used
for application calls. The ID can also be used to view the code of the created
application, as well as the values that are stored in its global state using the

blockchain explorer. One of these explorers is AlgoExplorer [23].

Application Global State

Key Type Ve

;;;;;

Pic. 3.2 — CourseManagement Application Global State in Algo Explorer

gaxc Sy

Pic. 3.3 — CourseManagement Approval Program in AlgoExplorer

e RewardsManagement smart contract

To create the Rewards application, we also have to create

makeApplicationCreateTxn transaction. Once the RewardsManagement SC is

64

deployed, it must be funded as it functions as an escrow account and has a
minimum balance requirement. To do this, we need to get the escrow account
address and transfer Algo there (the minimum balance for any Algorand account
Is 0.1Algo). Since the platform will use its own token for payment, escrow must
also be set up to work with it (opt-in the asset).

Obtaining an escrow account address using Algosdk:

const escrowAddress = algosdk.getApplicationAddress (appld);

To fund the escrow account, we create a regular payment transaction
using Algorand JS SDK, where the escrow account address will be specified as

the receiver:

let sender = system.addr;

let receiver = escrowAddress;

let suggestedParams = await
algodClient.getTransactionParams () .do () ;

let amount = 200000; //200000 MicroAlgo = 0.2 Algo

const txn =

algosdk.makePaymentTxnWithSuggestedParamsFromObject ({
from: sender,
suggestedParams,
to: receiver,
amount: amount,

1)

const signedTxn = txn.signTxn (system.sk);
const { txId: createTxId } = await algodClient
.sendRawTransaction (signedTxn)
.do ()7

Listing 3.14 — Creating a payment transaction to transfer Algo to the

escrow account

We are transferring 0.2 Algo because we are going to set up the escrow to
work with the platform asset. For an account with two assets, the minimum

balance is 0.2 Algo.

65

To opt-in the escrow account to the asset, we must create a payment
transaction and send 0 of the asset amount to that account. It will increase the

account minimum balance by 100,000 microAlgos.

1 opt in escrow:

2 // opt-in to the asset

3 itxn begin

4

5 int axfer

6 itxn field TypeEnum

7

8 txn Assets O

9 itxn field XferAsset

10

11 global CurrentApplicationAddress
12 itxn field AssetReceiver
13

14 int O

15 itxn field AssetAmount
16

17 itxn submit

18 b done

Listing 3.15 — Opting-in the escrow account to the platform asset

After this, any account can transfer the platform asset to the escrow

account.
3.1.5 Interaction with the smart contract

To trigger the execution of the smart contract logic, we use application
calls. They can include any necessary arguments or data required by the smart
contract. From the backend, we create an application call transaction. Specify the
application ID of the stateful smart contract and additional parameters required
by the contract's logic.

When called, smart contracts on Algorand gain access to certain external

resources, so it is necessary to determine which addresses, applications and

66

assets the contract will interact with (these are called “foreign”

assets/accounts/applications).

Example of calling the ‘CalculateCoursePrice’ method in the

CourseManagement Application:

const appArgs = [Encodeuint8arr('CalculateCoursePrice')];

const suggestedParams = await
algodClient.getTransactionParams () .do () ;

const appForeignAssets = [106326517]; //id of the Platform token

const appAccounts = [accAddress]; //appAccounts variable is assigned
an array containing accAddress, representing the account associated with the application.

const foreignApps = [foreignAppId]; //foreignApps variable is
assigned an array containing foreignAppld, representing the application associated with the
current application.

const callTxn = algosdk.makeApplicationNoOpTxn (
system.addr,
suggestedParams,
appld,
appArgs,
appAccounts,
foreignApps,
appForeignAssets
) ;
const signedCallTxn = callTxn.signTxn (system.sk);
const { txId: callTxnId } = await algodClient
.sendRawTransaction (signedCallTxn)

.do ()7

Listing 3.16 — CourseManagement Application NoOp transaction

67

When a student enrolls in the course, he must also agree to interact with the
application. For this purpose, the Opt-In transaction is created as follows:

const suggestedParams = await
algodClient.getTransactionParams () .do () ;

const appOptInTxn = algosdk.makeApplicationOptInTxnFromObject ({
from: studentAccount.addr,
applIndex: appld,
suggestedParams,
})
const signedCallTxn = appOptInTxn.signTxn (studentAccount.sk);
const { txId: callTxnId } = await algodClient

.sendRawTransaction (signedCallTxn)

.do (),
Listing 3.17 — Opt-in transaction

In this case, the sender of the transaction is the student who must opt-in to
the application. The local storage in the contract will be associated with his
address.

Next, we will look at the main vulnerabilities that can occur in smart
contracts written in TEAL. We will also check the code of the smart contracts
described in this section for the presence of these vulnerabilities.

3.2 Smart contracts code audit

Smart contracts are based on program code, any error in the code leads to
Incorrect execution of the contract. This can be especially dangerous when it
comes to financial transactions or other actions, the cost of errors of which is
high enough. Errors in smart contracts can lead to large financial losses and a
breach of user confidence in the platform. That is why the analysis of smart
contracts is an essential part of the development of any decentralized

application. To ensure the reliability, security, and correct execution of smart

68

contracts, it is necessary to audit the code. Verification of smart contracts allows
developers to check the correctness of their code and protect them from possible
errors.

A smart contract audit is a procedure that involves checking and testing
the smart contract code to identify possible problems or vulnerabilities. Smart
contracts audit is a rather complex and voluminous task. It includes the
following stages: checking the smart contract specification, analysis of the
contract code, functionality, and logic of its operation, and manual verification
of the smart contract.

The purpose of smart contract auditing is to find any behavior that may
have caused the code to fail or provide an unexpected result to the user. It is
performed to identify potential vulnerabilities, programming errors, weaknesses,

and other issues that could lead to unwanted consequences or security risks.

Some of the main reasons for the importance of smart contracts audit are:

° Security and Quality Improvement: Smart contract code review
reveals vulnerabilities, bugs, and weaknesses that can be exploited
by hackers to attack or gain access to assets and data, which can
lead to loss of funds. Auditing improves the quality and reliability
of contracts, which reduces the risk of failures, unexpected
behavior, or loss of assets.

° Compliance: An audit helps to ensure that the contract operates in
accordance with the requirements and specifications defined by the
customer, performs the necessary operations, and ensures that the
platform functions correctly.

. Transparency and trust: Smart contract code audits provide
platform users with confidence in reliability, security, and

compliance.

69

Next, we will take a closer look at the vulnerabilities that are most often
found in Algorand smart contracts (Table 3.1). They are described in more detail
in [24]. Also, some new vulnerabilities typical for Algorand smart contracts are
highlighted in the work [25].

Table 3.1
Vulnerabilities in the Algorand smart contracts
Vulnerability Description
Missing Group Size Check If the application does not check the

size of a group of transactions,
attackers can add their own
transactions to the group, which can
lead to the loss of funds if these
transactions involve the transfer of
assets.

Consider the example: removing lines
2-5 in Listing 3.6.

Missing Access Control If the smart contract code does not
contain checks for application calls
such as UpdateApplication and

DeleteApplication, an attacker can

70

update the application code or

completely delete it.

Missing Asset ID Verification If the smart contract code does not
check the ID of the asset that the
contract interacts with (accepts, sends,
etc), an attacker can manipulate the
logic of the contract by passing a fake,
less or more valuable asset instead of
the correct asset.

Consider the example: removing lines
12-15 in Listing 3.6. The attacker can
then create a valid transfer transaction

for more valuable assets.

Missing Inner Transaction Fee Check |If the fee amount for an inner
transaction is not explicitly set in the
smart contract, an attacker can create
operations that perform inner
transactions and burn the application
balance in the form of fees.

Consider the example: removing lines
16-17 in Listing 3.10.

Missing RekeyTo Parameter Check If there is no check for the RekeyTo
parameter, then an attacker can set it
on his public address, and will be able
to directly control the contract account
assets or take over the signature

account. More details about the

71

possibility of Rekeying can be found

in the Algorand documentation [26].

Missing Transaction Receiver Check | To validate payment transactions in
Algorand, developers can use an
atomic transaction group to link
payment transactions and application
call transactions (Part 3.1.1, Listing
3.6). If a smart transaction does not
verify the receiver of a payment
transaction or asset transfer
transaction, an attacker can use this to
specify a different address for the
recipient of the transaction.

Consider the example: removing lines
17-20 in Listing 3.6.

Overflow/underflow The AVM default panics on
overflows, underflows, or division by
zero. It halts execution and fails the
transaction. To prevent this error from
occurring, it is possible to add
restrictions on the values of variables
that are involved in operations that
can possibly result in the overflow or

underflow.

There are different approaches to analyzing smart contract code, including:

12

e Formal verification — method that uses mathematical proof and logic to
verify the correctness of a smart contract. When implementing smart
contracts, formal verification can prove that the business logic of the
contract satisfies the predefined specification. This is done by creating
formal specifications that describe the characteristics of a smart contract
and checking the compliance of the formal model with the smart contract
specification. The specifications must include all the properties of the
contract and define how it should operate under different conditions.
Formal verification uses many approaches. Theorem Proving, Model
Checking, and Runtime Verification are widely used in the context of
smart contracts [30].

e Symbolic execution is one of methods used for formal verification that
allows developers to automatically explore all possible branches of
program execution using symbolic values instead of specific inputs. These
values determine which paths should be executed. In the context of smart
contracts, this method allows developers to explore all possible paths and
conditions in the contract code to discover potential vulnerabilities or
misbehavior without actually executing the contract on the blockchain
network. This method also makes it possible to detect parts of the code
that are not used in the smart contract (Dead Code) and can be potentially
vulnerable.

e Static analysis — method that checks the source or bytecode of a smart
contract before execution. Static analyzers can detect common

vulnerabilities in smart contracts.

In this work, to audit the code of smart contracts, we will use Tealer —
TEAL static analyzer with a set of vulnerability detectors for fast contract

verification [27]. It analyzes the Teal program and creates its CFG (Control

73

Flow Graph). The analyzer comes with a set of vulnerability detectors and

printers, allowing developers to quickly review contracts.

Tealer printers provides following functionality:
e cfg: Export the CFG of the contract to a dot file;
e human-summary: Print a human-readable summary of the contract;
e function-cfg: Export the CFG of each subroutine in the contract;

e call-graph: Export the call-graph of the contract to a dot file [27].

Tealer provides following detectors:

e is-deletable: check if the stateful application can be deleted by sending an
DeleteApplication type application call;

e is-updatable: check if the stateful application can be updated by sending
an UpdateApplication type application call;

e unprotected-deletable: check if the stateful application can be deleted by
anyone;

e unprotected-updatable: check if the stateful application can be updated by
anyone;

e group-size-check: check missing GroupSize validation;

e can-close-account: check missing AssetCloseTo field validation [28].

Thus, using this tool, we can check our smart contract for some of the
vulnerabilities described in the Table 3.1, namely: missing Access Control while

updating or deleting the application, missing Group Size Check.

Below is the result of checking the CourseManagement smart contract

using the Tealer tool (Pic. 3.4).

74

Reading contract from file: "./smart_contracts/createCourse.teal”

Check: "unprotected-deletable”, Impact: High, Confidence: High
Description: Unprotected Deletable Applications

Wiki: https://github.com/crytic/tealer/wiki/Detector-Documentation#tunprotected-deletable-application

Detector didn't find any vulnerable paths.

Check: “unprotected-updatable”, Impact: High, Confidence: High

Description: Unprotected Upgradable Applications

Wiki: https://github.com/crytic/tealer/wiki/Detector-Documentation#tunprotected-updatable-application
Detector didn't find any vulnerable paths.

Check: "is-deletable™, Impact: High, Confidence: High

Description: Deletable Applications

wiki: https://github.com/crytic/tealer/wiki/Detector-Documentationi#deletable-application
Detector didn't find any vulnerable paths.

Check: "is-updatable™, Impact: High, Confidence: High

Description: Upgradable Applications

wiki: https://github.com/crytic/tealer/wiki/Detector-Documentation#upgradable-application
Detector didn't find any vulnerable paths.

Check: “group-size-check”, Impact: High, Confidence: High

Description: Usage of absolute indexes without validating GroupSize

Wiki: https://github.com/crytic/tealer/wiki/Detector-Documentation#missing-groupsize-validation

Detector didn't find any vulnerable paths.

Pic. 3.4 — The result of checking the CourseManagement smart contract

using the Tealer for vulnerabilities

As we can see, these vulnerabilities were not found in the smart contract.

If the smart contract code contains some vulnerabilities, the Tealer tool will
show the vulnerable path. We deliberately removed transaction group check
when checking payment transaction parameters (Listing 3.6) to show the

vulnerable path detected by the Tealer in the smart contract (Pic. 3.5).

75

Check: "group-size-check”, Impact: High, Confidence: High
Description: Usage of absolute indexes without validating GroupSize

Wiki: https://github.com/crytic/tealer/wiki/Detector-Documentation#missing-groupsize-validation

Following are the vulnerable paths found:

path: ® -> 2 -> 12 -> 18 -> 48
check file: missing group size 1.dot

Pic. 3.5 — Vulnerable path checking payment transaction parameters

To explore this path, we can build the CourseManagement smart contract
data flow graph using the “print-cfg” printer of Tealer tool.

CFG provides a visual representation of the control flow within a smart
contract. This can be useful for developers to understand the logical flow of a
program and identify potential problems or vulnerabilities.

Figure 3.6 shows a vulnerable path that was detected in the smart contract.

Additional information has been added to each basic block in the graph:

e block id: id, which is used to identify the basic block in the contract. This
makes it easier to analyze the structure and logic of the contract and also
makes it easier to understand the results of the detector's work.

e cost: opcode cost of the basic block execution.

Complete CFG for the RewardsManagement smart contract is provided in

Appendices A.

J block id = 0: cost = §

L. spragema Versson 6

ApplicationtD i 0 la Creation 1xp
1 app i = 0, must be creation call
3. o ApplicationlD

4 im0

§ =

6. bZ not_creation

/

 block _Id ~ 2; cost -~

61, not_creation:

62. txn OnCompleteon
63t NoOp

6d ==

65. baz uadle_noop

/ 2

/ block W < 12; cost ~ §

133, handle_noop

134, txna ApplicationArgs O

135 byte “CheckTeacherPayment*
136, ==

137, buz check teacher payisent

/

= _¢

// bleck Wl ~ I8; cost < 18

162 check_teacher paymeunt

163, gtxn O AssstAmount
164 int 0
165 ==

166. assent

168, gtxn O XferAssat
169 it 106326517
170, =

171 sssen

173, gixn 0 AssetReceiver
174 addr JERPXALRTIESFS6FWXASCDASZIAATSPNMOBYQHF2UXOXRRNLXSKZAMTADL
175, ==

176, assent

178 gxn O Rekey To
179, ghobal ZeroAddress
180, ==

181, mssent
132 b done

Ih‘ Block kel = 48: cost -§

482 done:
453, ot 1
484, refurn

Pic. 3.6 — CFG of the vulnerable path in the CourseManagement SC

7

Conclusions to the chapter.

In this section, we looked in detail at the process of implementing stateful
smart contracts on TEAL and their interaction with the client application using
the Algorand JS SDK. The structure of smart contracts and the main methods of
their work were described. In the course of the work, smart contracts for course
management and rewards management were created.

The CourseManagement application is necessary to manage the main
processes on the platform that are associated with the course: creating a course,
calculating its cost, registering students for the course, saving student scores,
and calculating the sum of scholarships for students and rewards for teachers.
The RewardsManagement smart contract controls the distribution of rewards to
users. It also functions as an escrow account.

We also described the main vulnerabilities that may exist in the code of
smart contracts created on TEAL. We examined the main approaches to
verifying the code of smart contracts. In this work, we analyzed the created
smart contracts for the presence of the described vulnerabilities. We also used
the static code analysis tool for smart contracts on TEAL — Tealer, which
allows us to search for vulnerabilities and explore malicious paths in the

contract code.

78

CONCLUSIONS

In this thesis, we considered the possibilities of using blockchain, and
smart contracts in particular, in education. We analyzed the features of these
technologies as well as the benefits they provide.

This study was undertaken to consider the process of developing smart
contracts for a blockchain-based educational platform. The smart contracts
being developed make it possible to manage the process of registering students
for a course, save their scores in the blockchain, calculate the amount of
scholarships for students and rewards for teachers, and distribute other financial
rewards to platform users.

In the course of our work, we identified the main roles of users on the
educational platform and the actions of each of them, highlighting those use
cases that are regulated by smart contracts.

Algorand was chosen as a blockchain platform for the development of
smart contracts. It is one of the fastest, low-cost, carbon-negative blockchains
that has advanced smart contract capabilities with low transaction fees. TEAL
was chosen as the language for writing smart contract code for the educational
platform.

We developed two smart contracts: CourseManagement and
RewardsManagement. CourseManagement application manages the main
processes on the platform related to the course: creating a course, calculating its
cost, registering students for the course, saving student scores in blockchain,
calculating the amount of scholarships for students and rewards for teachers.
RewardsManagement application controls the distribution of financial rewards
among platform users. It also functions as an escrow account.

In this work, we described the main vulnerabilities in smart contracts
written in the TEAL language. We analyzed the causes of their occurrence and

the possibility of eliminating these wvulnerabilities. The developed smart

79

contracts were also tested for the described vulnerabilities. We also used the
Tealer tool to check the code of our smart contracts for the presence of

malicious paths.

80

REFERENCES
[1] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
Decentralized Business Review, 21260.
[2] Cryptopedia: website. URL.:
https://www.gemini.com/cryptopedia/glossary
[3]What Is Blockchain and How Does It Work? (September, 2023).
Medium: website. URL.:

https://medium.com/@zahidsardarsardarali/what-is-blockchain-and-how-
does-it-work-6515fa916d58

[4]What are smart contracts on blockchain? IBM: website. URL:
https://www.ibm.com/topics/smart-contracts

[5]JARCHANGEL - Trusted Archives of Digital Public Records. Surrey
Blockchain: website. URL:

https://blockchain.surrey.ac.uk/projects/archangel.html

[6]Ma, Y., & Fang, Y. (2020). Current Status, Issues, and Challenges of
Blockchain Applications in Education. International Journal of Emerging
Technologies in Learning (IJET), 15(12), pp. 20-31.
https://doi.org/10.3991/ijet.v15i12.13797

[7]Ullah, N., Mugahed Al-Rahmi, W., Alzahrani, A. I., Alfarraj, O., &
Alblehai, F. M. (2021). Blockchain technology adoption in smart learning

environments. Sustainability, 13(4), 1801.

[8]Sun, H., Wang, X., & Wang, X. (2018). Application of Blockchain
Technology in Online Education. International Journal of Emerging
Technologies in Learning (IJET), 13(10), pp. 252-259.
https://doi.org/10.3991/ijet.v13i10.9455

[9] Yalanetskyi, V. (2023). BLOCKCHAIN-BASED LEARNING
MANAGEMENT SYSTEMS. Electronic Professional Scientific Edition

«Cybersecurity: Education, Science, Technique», 3(19), 56-68.
https://doi.org/10.28925/2663-4023.2023.19.5668

https://www.gemini.com/cryptopedia/glossary
https://www.ibm.com/topics/smart-contracts
https://blockchain.surrey.ac.uk/projects/archangel.html
https://doi.org/10.3991/ijet.v15i12.13797
https://doi.org/10.3991/ijet.v13i10.9455

81

[10] Samanta, A. K., Sarkar, B. B., & Chaki, N. (2021). A blockchain-
based smart contract towards developing secured university examination
system. Journal of Data, Information and Management, 3, 237-249.

[11] Sanni, M. I., & Apriliasari, D. (2021). Blockchain Technology
Application: Authentication System in Digital Education. Aptisi
Transactions on Technopreneurship (ATT), 3(2), 151-163.

[12] What is Educational Platform. 1GI Global: website. URL:
https://www.igi-global.com/dictionary/emerging-platform-
education/42260#:~:text=An%20integrated%20set%200f%?20interactive,e

nhance%20educational%20delivery%20and%20management

[13] Konnova. O. V. “Using algebraic programming methods to analyze
models of education tokenization”. URL.:
http://ekhsuir.kspu.edu/handle/123456789/16484

[14] Algorand Standard Assets (ASAs). Algorand Developer Portal:
website. URL: https://developer.algorand.org/docs/get-details/asa/ (date

of application: October 2023)

[15] The world’s most powerful and sustainable blockchain. Algorand:
website. URL.: https://algorand.com/

[16] Chen, J.,, & Micali, S. (2016). Algorand. arXiv preprint
arXiv:1607.01341.

[17] Introduction. Algorand Developer Portal: website. URL:

https://developer.algorand.org/docs/get-details/dapps/smart-contracts/

(date of application: September 2023)
[18] The smart contract language. Algorand Developer Portal: website.

URL: https://developer.algorand.org/docs/get-details/dapps/avm/teal/

(date of application: September 2023)
[19] Jjs-algorand-sdk. GitHub: website. URL.:
https://github.com/algorand/js-algorand-sdk

https://www.igi-global.com/dictionary/emerging-platform-education/42260#:~:text=An%20integrated%20set%20of%20interactive,enhance%20educational%20delivery%20and%20management
https://www.igi-global.com/dictionary/emerging-platform-education/42260#:~:text=An%20integrated%20set%20of%20interactive,enhance%20educational%20delivery%20and%20management
https://www.igi-global.com/dictionary/emerging-platform-education/42260#:~:text=An%20integrated%20set%20of%20interactive,enhance%20educational%20delivery%20and%20management
http://ekhsuir.kspu.edu/handle/123456789/16484
https://developer.algorand.org/docs/get-details/asa/
https://algorand.com/
https://developer.algorand.org/docs/get-details/dapps/smart-contracts/
https://developer.algorand.org/docs/get-details/dapps/avm/teal/
https://github.com/algorand/js-algorand-sdk

82

[20] DeFi to FutureFi. Algorand: website. URL.:

https://algorand.com/resources/defi

[21] Algorand dispenser. URL.: https://bank.testnet.algorand.network/

[22] Pera wallet. URL.: https://perawallet.app/

[23] AlgoExplorer. URL.: https://algoexplorer.io/
[24] (Not So) Smart Contracts. Trail of Bits: website. URL:

https://secure-contracts.com/not-so-smart-contracts/algorand/index.html

(date of application: September 2023)

[25] Sun, Z., Luo, X., & Zhang, Y. (2023). Panda: Security analysis of
algorand smart contracts. In 32nd USENIX Security Symposium
(USENIX Security 23) (pp. 1811-1828).

[26] Rekeying. Algorand Developer Portal: website. URL:

https://developer.algorand.org/docs/get-details/accounts/rekey/ (date of
application: September 2023)
[27] Tealer. GitHub: website. URL: https://github.com/crytic/tealer

(date of application: August 2023)
[28] Vara Prasad Bandaru. (2022, February 09). Detector

Documentation. https://github.com/crytic/tealer/wiki/Detector-

Documentation#missing-assetcloseto-field-validation
[29] Bartoletti, M., Bracciali, A., Lepore, C., Scalas, A., & Zunino, R.

(2021). A formal model of Algorand smart contracts. In Financial

Cryptography and Data Security: 25th International Conference, FC 2021,
Virtual Event, March 1-5, 2021, Revised Selected Papers, Part | 25 (pp.
93-114). Springer Berlin Heidelberg.

[30] Corwin Smith. (March, 2023). Formal Verification of smart
contracts. Ethereum: website. URL.:

https://ethereum.org/en/developers/docs/smart-contracts/formal-

verification/

https://algorand.com/resources/defi
https://bank.testnet.algorand.network/
https://perawallet.app/
https://algoexplorer.io/
https://secure-contracts.com/not-so-smart-contracts/algorand/index.html
https://developer.algorand.org/docs/get-details/accounts/rekey/
https://github.com/crytic/tealer
https://github.com/crytic/tealer/wiki/Detector-Documentation#missing-assetcloseto-field-validation
https://github.com/crytic/tealer/wiki/Detector-Documentation#missing-assetcloseto-field-validation
https://ethereum.org/en/developers/docs/smart-contracts/formal-verification/
https://ethereum.org/en/developers/docs/smart-contracts/formal-verification/

83

[31] Anne Kenyon. (Febriary 28, 2022). Hello? Contract Calling.

Algorand: website. URL: https://algorand.com/resources/blog/hello-

contract-calling
[32] Rautenberg M. J., Rezabek F. (2022). A Case Study of Security

Vulnerabilities in Smart Contracts. Seminar IITM SS 22, Network

Architectures and Services. URL.:
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2022-11-1/NET-
2022-11-1 10.pdf

[33] Espina V. B. (2020). Symbolic execution. OpenZeppelin: website.
URL.: https://forum.openzeppelin.com/t/symbolic-execution/2158

[34] Mohanta, B. K., Panda, S. S., & Jena, D. (2018, July). An overview

of smart contract and use cases in blockchain technology. In 2018 9th

international conference on computing, communication and networking
technologies (ICCCNT) (pp. 1-4). IEEE.

[35] Khan, S. N., Loukil, F., Ghedira-Guegan, C., Benkhelifa, E., &
Bani-Hani, A. (2021). Blockchain smart contracts: Applications,
challenges, and future trends. Peer-to-peer Networking and Applications,
14, 2901-2925.

[36] Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., & Wang, F. Y.
(2019). Blockchain-enabled smart contracts: architecture, applications,
and future trends. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 49(11), 2266-2277.

[37] Sathya, A. R., Panda, S. K., & Hanumanthakari, S. (2021).
Enabling smart education system using blockchain technology. In
Blockchain Technology: Applications and Challenges (pp. 169-177).
Cham: Springer International Publishing.

[38] Cheng, J. C., Lee, N. Y., Chi, C., & Chen, Y. H. (2018, April).

Blockchain and smart contract for digital certificate. In 2018 IEEE

https://algorand.com/resources/blog/hello-contract-calling
https://algorand.com/resources/blog/hello-contract-calling
https://forum.openzeppelin.com/t/symbolic-execution/2158

84

international conference on applied system invention (ICASI) (pp. 1046-
1051). IEEE.

[39] He, D., Deng, Z., Zhang, Y., Chan, S., Cheng, Y., & Guizani, N.
(2020). Smart contract vulnerability analysis and security audit. IEEE
Network, 34(5), 276-282.

[40] Raimundo, R., & Rosario, A. (2021). Blockchain system in the
higher education. European Journal of Investigation in Health,
Psychology and Education, 11(1), 276-293.

Appendix A

R

17 1w On

e

' &
ML ot

) e

h —

[T |

13 - S

o

QL e

=
)

4 =30 Ao e ¢

7 vrw PolvenTwdeie b

i - wrvv—

L erasia weed
ST
4 wratn
q-E M- - R
04 was Aygbonbanirns & BT
[ereisear] [3 i
" — T
12 0 oy g W Ry
)
| T

R

130 B it

A1 b

Wik M= TR i

(g

S

85

