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Preface

This monograph is devoted to problem of data processing in the fields of technical
diagnostics and bioinformatics. The techniques, models and algorithms presented in
this book is a result of many-years authors’ research. However, we do not want to say
that our solutions are absolute ones. To our mind, each of the tasks can be solved by
various ways. In this monograph, we have presented our views concerning solutions
of appropriate tasks. Moreover, our opinion concerning one or other solution can
be changed during accumulation of knows, skills and experience in the field of data
science techniques applying.

The main direction of our research is focused to gene expression profiles process-
ing for purpose of both gene regulatory network reconstruction and validation of the
reconstructed models. This problem is one of the main direction of current bioinfor-
matics. The experimental foundation for our research are arrays of gene expressions
obtained as a result of both DNA microarray experiments or RNA molecules se-
quencing technique. Gene expressions in this case is meant a level of gene activity.
This value is proportional to number of genes which correspond to appropriate type
of protein in the biological organism. Gene expressions profile is a vector of gene
expressions determined for differed samples or for different conditions of the experi-
ment performing. Reconstruction of gene regulatory networks and further simulation
of the reconstructed models forms the basis for investigation and analysis of both
the character of molecular systems elements interconnections and influences of these
interconnections to functional possibilities of the investigated objects.

The complexity of gene networks reconstruction is determined by the follows:
the experimental data which are used for the reconstruction process usually does
not allows defining the network structure and pattern of genes interconnection in
the network. Moreover, large quantity of genes complicates the interpretation of the
network elements interconnections. In this case, it is necessary to conduct research
concerning: experimental data pre-processing in order to determine the optimal ways
of gene expression array formation; gene expression profiles reducing for purpose of
informative genes allocation in terms of quantitative quality criteria; evaluation of
both the network topology and the pattern of genes interconnection in network with

1
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the use of experimental data obtained by the use of both DNA microchip experiment
or RNA-molecules sequencing method. Qualitatively reconstructed gene regulatory
network allows investigating the pattern of the biological organism development at
the genetic level. It creates the conditions for both making new effective medicines
and development of methods of early diagnostics and effective treatment of complex
diseases. This fact indicates the actuality of the research in this subject area.

Structure of book
Chapter 1 is devoted to development of technique of 1-D signals filtering based on
complex use of Huang transform and wavelet analysis. The acoustic emission signals
have been used as experimental during the simulation process. The techniques of
complex signals processing based on wavelet analysis are widely used in various fields
of scientific research. The effectiveness of this technique implementation depends
on the choice of the type of the used wavelet, level of the wavelet decomposition
and the thresholding coefficient value to process the detail coefficients. It should
be noted that effective techniques for these parameters objective determining are
absent nowadays. Moreover, the direct implementation of this technique for signals
processing increases the requirements to the wavelet filter parameters determination.
In this case more effective can be techniques which are based on decomposition of
the signal into components with the further allocation and wavelet-processing of
the noised components. In this chapter we have solved this problem based on the
complex use of Huang transform and wavelet filtering techniques.

The results of the research concerning development of the objective clustering
inductive technology have been presented in chapter 2. The idea and main con-
ception of this technology were formulated by prof. Ivakhnenko A.G. This chapter
presents the research concerning practical implementation of the objective cluster-
ing conception. Implementation of this technology involves determination of optimal
clustering based on the extremum value of the complex balance criterion which con-
tains as the components both the internal and external clustering quality criteria.
The clustering process is carried out on two equal power subsets concurrently. The
equal power subsets contain the same quantity of pairwise similar objects. This
approach allows us to decrease the reproducibility error, which is one of the main
unsolved problems of existing clustering algorithms. In this chapter, we have imple-
mented the technique of objective clustering based on both density-based DBSCAN
clustering algorithm and self-organizing SOTA one. The conducted research has
allowed us to propose the stepwise procedure of gene expression profiles clustering
at the stage of gene expression profiles pre-processing.

In chapter 3, we present the results of the research concerning development
of gene expression profiles biclustering technique in order to allocate mutually cor-
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related genes and samples for the following reconstruction of gene networks and
validation of the reconstructed models. In the beginning, we have compared differ-
ent biclustering techniques using synthetic data contained non-intersectional equal
biclusters. At this stage, we have determined the ensemble biclustering technique as
the most effective in comparison with other biclustering techniques in terms of both
the internal and the external biclustering quality criteria. Then, we have proposed
the technique of data biclustering based on ensemble biclustering algorithm, imple-
mentation of which allows determining the optimal algorithm parameters in terms
of internal biclustering quality criterion. Finally, we have proposed the technique of
step-by-step cluster-bicluster analysis of gene expression profiles. This technique is
used as one of the components within the framework of information technology of
gene expression profiles processing.

In chapter 4 we have presented and detail described the structure block chart
of the information technology of gene expression profiles processing for purpose of
gene regulatory networks reconstruction and validation of the reconstructed models.
Then, we have presented the result of the research concerning solution of problem
of gene expression array formation based on the use of both DNA microchip experi-
ments or RNA molecules sequencing method. At the next step we have presented the
technique of non-informative genes reducing based on complex use of fuzzy inference
system and clustering quality criterion.

Chapter 5 is devoted to development of technique of gene regulatory network
reconstruction and validation of the reconstructed models. We have proposed the
technique of optimizing the gene network topology based on the complex use of
the network topological parameters. The optimal network topology corresponded
to the maximum value of general topological parameter, which contains the simple
topological parameters as the components. The simulation process was performed
using both correlation and ARACNE inference algorithms. This chapter contains
also the results of the research concerning validation of the reconstructed models
based on evaluation of type 1 and type 2 errors.
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Chapter 1

Acoustic Emission Signals
Filtering

1.1 Introduction
Acoustic emission (AE) technique is one of the current directions of structural state
monitoring methods which are developed as an alternative of non-destructive testing
methods. Implementation of this technique allows us to perform both the contin-
uous or on-demand diagnostics and discovering defects using permanently installed
sensors [62, 120, 31, 148]. The main advantages of the AE technique are high level
of availability and low maintenance costs. Identification of a defect location is per-
formed by evaluation of the time difference of AE signals arrival to the sensors
which are allocated at the different places of the object [140, 132]. High level of
noise component which appears at the stages of signal generation, propagation and
detection is one of the main reasons which complicates the successful application
of this technique. Thus, the filtering of initial AE signal in order to remove the
noise component is the one of the necessary conditions of the AE signals processing
technique successful implementation.

A lot of techniques for different types of signals filtering exist nowadays. So, in
[83, 137] the authors presented the signal processing methods based on smoothing
the signal by the use of both the extrapolation technique and minimizing the mean
square error between the estimated random and the desired processes. The main
disadvantage of these techniques is their low effectiveness in the case of processing
of non-stationary and non-linear signals with local particularities. Implementation
of these techniques in these cases promotes to the loss of the large amount of useful
information. The current methods of non-stationary and non-linear signals process-
ing are based on decomposition of the signal with allocation of its components and
the following processing of these components in order to remove the noise. The
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paper [130] presents the results of the research concerning the use of fast Fourier
transform for evaluation of the anisotropic relaxation of composites and nonwovens.
Implementation of the fast Fourier transforms technique for time-frequency analysis
of pressure pulsation signal is presented in [43]. The frequency spectrum including
frequency-domain structure and approximate frequency-scope was obtained during
the simulation process. However, it should be noted, that fast Fourier transform
technique is effective in the case of stationary signals processing. In the case of
non-stationary and non-linear signal processing the effectiveness of this technique
decreases.

An alternative and logical continuation of the fast Fourier transforms technique
is wavelet analysis [147, 119]. Implementation of this technique involves wavelet-
decomposition on levels from 1 to N with calculation of both the approximation
coefficients on N -th level and the detail coefficients on levels from 1 to N . In the
most cases the detail coefficients contain the noise component, thus these coeffi-
cients should be processed during the filtering process. Reconstruction of the signal
is performed with the use of both the approximation coefficients and the processed
detail coefficients. The effectiveness of this technique implementation depends on
the choice of the type of the used wavelet, level of the wavelet decomposition and
the thresholding coefficient value to process the detail coefficients. It should be
noted that effective techniques for these parameters objective determining are ab-
sent nowadays. Moreover, the direct implementation of this technique for signals
processing increases the requirements to the wavelet filter parameters determination.
In this case more effective can be techniques which are based on decomposition of
the signal into components with the further allocation and wavelet-processing of the
noised components.

In [69, 71] the authors proposed the use of the empirical mode decomposition
(EMD) method based on complex use of both the Huang transform and Hilbert spec-
trum for non-stationary and non-linear signals analysis and processing. The main
concept of this method consists of decomposition of the initial signal into mutu-
ally independent intrinsic mode functions (IMFs) based on Huang transform. Then,
the Hilbert spectrum is formed by applying the Hilbert transform to the obtained
modes (IMFs). The analysis of the Hilbert spectrum for the allocated modes allows
us to receive the detail information concerning particularities of the investigated sig-
nal. Nowadays, the Hilbert-Huang technique has been implemented in various fields
of scientific research. So, the paper [94] presents the technique to decompose the
multicomponent micro–Doppler signals based on the complex use of Hilbert-Huang
transform and analytical mode decomposition (HHT-AMD). The approach concern-
ing implementation of the Hilbert-Huang transform (HHT) for detection, diagnostic
and prediction of the degradation in the ball bearing is proposed in [129]. The papers
[133, 134, 135] present the results of the research concerning implementation of the
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HHT for analysis of the vibration signals from different objects. In the paper [111]
the authors present the results of the research concerning the use of HHT for both
the analysing and processing ECG signal in order to diagnose the brain functionality
abnormalities. The results of the research concerning implementation of the HHT for
analysis of both the non-stationary financial time series and acoustic wave frequency
spectrum characteristics of rock mass under blasting damage are presented in the
papers [70, 143]. However, it should be noted that in spite of achievements in this
subject area the problem of denoising non-stationary and non-linear signals has no
effective solution nowadays. This problem can be solved based on the complex use of
modern techniques of both the data mining and machine learning which are applied
successfully in different areas of the scientific research nowadays. In [19, 16, 18]
we propose the technique of synthetic and acoustic emission (AE) signals filtering
based on the complex use of both the Huang empirical mode decomposition method
and wavelet analysis. The optimal parameters of the wavelet filter for each of the
intrinsic modes are determined on the basis of minimum value of the quantitative
criterion which is calculated as the ratio of Shannon entropies for the filtered data
and for the allocated noise component. The obtained results of the research we
present in this chapter.

1.2 Empirical Mode Decomposition and Discrete Wavelet
Transform

Huang transform technique involves that initial signal is a complex one and it can
be decomposed into intrinsic mode functions (IMFs) [69]:

y(x) =
n∑

i=1
fi(x) + rn(x) (1.1)

where: n is the number of the IMFs functions; fi(x) is the IMFs function on i-th
level of the signal decomposition; rn(x) is the residual function, which represent the
average trend of the investigated signal. Implementation of the Huang empirical
mode decomposition technique (EMD) intendes the following conditions:

• the number of each of the IMFs functions extrema and the number of zero
crossing should be equal or not differ by more than one;

• in any point of the IMFs function the mean value of the envelope defined by
local maximums and local minimums should be zero.

The signal decomposition process is stopped if one of the following conditions is
performed:
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Figure 1.1: A structural block chart of step-by-step process of the signal filtering

Figure 1.2: A structural block chart of the discrete wavelet decomposition process

• the residual function rn(x) does not contain more than 2–3 extrema points;

• the residual function rn(x) in whole interval of x change is insignificant in
comparison with appropriate values of the IMFs functions.

A structural block-chart of the step-by-step procedure of the signal filtering based
on the complex use of Huang empirical mode decomposition technique and wavelet
analysis is presented in Figure 1.1. As it can be seen, the result of the Huang
transform is selection of the IMFs functions which contain the noise component
for purpose of their further filtering using discrete wavelet transform technique.
Figure 1.2 presents the main idea of the discrete wavelet decomposition process.
Implementation of this procedure involves calculation of both the approximation
coefficients at N -th level and the detail coefficients at levels from 1 to N using the
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low frequency (LF) and high frequency (HF) filters:

y(x)→ {CA(N), CD(N), ..., CD(2), CD(1)} (1.2)

The noise component in the most cases is contained in detail coefficients therefore
these coefficients should be processed during the signal processing. To process the
detail coefficients we propose to use the soft thresholding in accordance with the
following conditions: {

d = 0, if d ≤ τ
d = d− τ, if d > τ

(1.3)

where d is the detail coefficient and τ is the thresholding coefficient value. It is
obvious, that quality of wavelet filtering process depends on type of the used wavelet,
level of the wavelet decomposition and thresholding coefficient value to process the
detail coefficients. In [19] we proposed the technique to determane the optimal
parameters of the wavelet filter based on the use of the Shannon entropy criterion
which is calculated on the basis of james-stein shrinkage estimator [67]. This method
is based on the complex use of two different models: a high-dimensional model
with low bias and high variance, and a lower dimensional model with larger bias
but smaller variance. Evaluation of the values distribution probability in a cell in
accordance with the James-Stein shrinkage method is calculated in the following
way:

pSrink
i = λpi + (1− λ)pML

i (1.4)

where pML
i is the probability of the values distribution in the i-th cell, which is

calculated by the maximum likelihood method; pi = 1
ni

is the maximum entropy
target in the i-th cell; ni is the number of the features in this cell. It is obvious, that
pML

i corresponds to the high-dimensional model with low bias and high variance and
pi is the estimation with higher bias and lower variance of the features distribution.
Intensity parameter λ in the proposed model is calculated as follows:

λ = 1−
∑k

i=1(pML
i )2

(n− 1)
∑k

i=1(pi − pML
i )2

(1.5)

where n is the number of the features in the vector. The value of Shannon entropy
is calculated with the use of standard formula taking into account the method of
the probability estimation:

HShrink = −
k∑

i=1
pShrink

i log2 p
Shrink
i (1.6)
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Figure 1.3: A structural block chart of the technique to calculate the Shannon
entropies ratio

In [16, 18] the authors proposed the technique of the wavelet filter optimal pa-
rameters determination based on the use of the ratio of Shannon entropies which
are calculated for both the filtered signal and the allocated noise component:

RH = H(filtered signal)
H(noise component) (1.7)

The optimal parameters of the wavelet filter corresponds to the minimum value
of the Shannon entropy for filtered signal and the maximum value of this criterion for
the allocated noise component. In this case the value of the relative criterion (1.7)
should be achieved the minimum one. The structural block chart of the procedure of
this criterion calculation within the framework of the proposed technique is presented
in Figure 1.3.

1.3 Hybrid model of AE signal filtering
Figure 1.4 shows the structural block chart of the algorithm to determine the wavelet
filter optimal parameters. The stages of this algorithm implementation are the fol-
lowing:

Stage I. Signal loading and Huang transform performing.

1. Loading of the investigated signal. Application of Huang transform to the
signal. Empirical mode decomposition of the signal.

2. Visualization and analysis of the obtained modes. Allocation of the noised
modes for their following processing.

Stage II. Wavelet filtering of the selected modes.

3. Setup the ranges and the steps of the wavelet filter parameters change.
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Figure 1.4: A structural block chart of the algorithm to determine the wavelet filter
optimal parameters
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3.1 Formation of the vector of different types of wavelets for the appropriate
mother wavelet.

3.2 Calculation of the thresholding coefficients initial value to process the
detail coefficients:

τ0 = σ
√

2 ln k

where k is the length of the investigated signal; σ is the median absolute
deviation for the allocated detail coefficients:

σ = δ · (|CD(i)−median(CD(i))|)

where i = 1, ..., n is the wavelet decomposition level, coefficient δ is de-
termined empirically during the simulation process.

3.3 Formation of the range and the step of the thresholding parameter value
change:

τmin = 0.1τ ; τmax = 5τ ; dτ = 0.02 · (τmax − τmin)

3.4 Evaluation of the wavelet decomposition maximum level.

4. Determination of the optimal type of the wavelet.

4.1 Initialization of the counter, which corresponds to the first wavelet in
the appropriate sequence (j = 1). Setup of the initial values of both
the wavelet decomposition level (N = 3) and the thresholding coefficient
value (τ = τ0).

4.2 Discrete wavelet decomposition of the signal with calculation of both the
approximation coefficients at the N -th decomposition level and the detail
coefficients at the levels from 1 to N .

4.3 Soft thresholding of the detail coefficients using the conditions (1.3).
4.4 Reconstruction of the signal based on both the approximation coefficients

and the processed detail coefficients.

5. Calculation of the data processing quality criteria.

5.1 Extraction of the noise component as the difference of both the initial
and filtered signals.

5.2 Calculation of the Shannon entropies for the filtered signal and for the
allocated noise component by the formula (1.6). Calculation of their ratio
by the formula (1.7).
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5.3 If the counter value is maximal one, the results analysis and fixation of
the optimal type of wavelet which corresponds to the minimum value of
the criterion (1.7). Otherwise, increment of the counter value and go to
the step 4.2 of this procedure.

6. Determination of the optimal wavelet decomposition level.

6.1 Initialization of the counter, which corresponds to the first level of wavelet
decomposition (z = 1).

6.2 Repetition of the steps from 4.2 to 5.3 of this procedure.
6.3 If the counter value is maximal one, the results analysis and fixation of

the optimal wavelet decomposition level. Otherwise, increment of the
counter value and go to the step 6.2 of this procedure.

7. Determination of the thresholding coefficient optimal value.

7.1 Initialization of the counter (v = 1), which corresponds to the minimum
value of the thresholding coefficient: (τ = τmin).

7.2 Repetition of the steps from 4.2 to 5.3 of this procedure.
7.3 If the counter value is maximal one, the results analysis and fixation of

the thresholding coefficient optimal value. Otherwise, increment of the
counter value and go to the step 7.2 of this procedure.

8. Filtering of the current IMFs function with the use of the wavelet filter optimal
parameters.

9. Repetition of the stage 2 for other of the allocated IMFs functions.

Stage III. Reconstruction of the signal.

10. Reconstruction of the signal with the use of both the processed and non-
processed components of the signal.

1.4 Experiment
Two type of signals were used during the simulation process. Figure 1.5 presents the
synthetic signals which were used to estimate the proposed technique effectiveness.
The first test signal contained 8 seconds of data from the 2005 TOMODEC ocean
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Figure 1.5: Sinthetic signals: a,c) signals without noise; b,d) signals with noise
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Figure 1.6: Four-point bend test device: 1) test sample; 2) support; 3) deformation
indicator; 4)AE signal indicator

bottom seismometer network at Deception Island, South Shetland Islands, Antarc-
tica [35]. The second test signal is the combination of two sinusoids with different
frequencies ω1 and ω2:

y2(t) = sin(ω1πt) + sin(ω2πt)

The noise component was generated as the vector of random numeric values, the
range of their changes corresponded to the condition:

range(noise) = 0.02 · (max(signal)−min(signal))

The experimental device which were used to generating the acoustic emission
signals for the different levels of mechanical loading of the tested material is shown
in Figure 1.6. The experimental device contains three main mechanisms: the defor-
mation, the force-fixation and the AE signal fixation mechanisms [3]. The samples
for four-point bend test were cut out from steel flat in the size 300×20×4 mm. The
simulation process involved the fixation of both the AE signals and the level of the
sample deformation for different levels of the tested sample loading. The broadband
sensors for acoustic emission instrument AF15 with a bandwidths of 0.2-2.0 was
used as the measurement device. The artificial load was increased step-by-step from
150 N to 400 N with fixation of the AE signals for different values of the sample
deformation. The examples of the AE signals which were obtained during the simu-
lation process are shown in Figure 1.7. As it can be seen, the shape of the signals is
changed during the load increase. However, the existence the noise component com-
plicates the obtained results interpretation. Thus, at the first step it is necessary to
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Figure 1.7: AE signals for different levels of the sample deformation



CHAPTER 1. ACOUSTIC EMISSION SIGNALS FILTERING 16

Figure 1.8: Results of the empirical mode decomposition for the synthetic signal 1

decrease the level of the noise component with saving useful information concerning
state of the investigated sample.

1.5 Results and Discussion

1.5.1 Results of the Sinthetic Signals Filtering

Figure 1.8 and Figure 1.9 present the results of the Huang transform implementa-
tion for the synthetic signals. The first stage of the hereinbefore presented algorithm
was used in this case. The analysis of the obtained results allows us to conclude
that in the both cases two IMFs functions (Mode 1 and Mode 2) contain the high
frequency noise component. Thus, these modes should be processed at the second
step of the algorithm implementation.

Figure 1.10 presents the results of the simulation concerning determination
of the optimal type of the wavelet for each of the allocated IMFs functions. The
biorthogonal wavelet bior was used as the mother wavelet in this case. This choice is
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Figure 1.9: Results of the empirical mode decomposition for the synthetic signal 2
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Figure 1.10: Results of the simulation concerning determination of the optimal
wavelet

determined by the result of the previous research involving the comparison analysis
of the orthogonal and biorthogonal wavelets for complex signals filtering [7]. The
authors have shown that the choice of the type of the mother wavelet from orthogonal
and biorthogonal wavelets in the case of the gene expression profiles filtering is
not determinative. The quality of the signal filtering is determined mainly by the
following parameters: type of the wavelet from the family of the mother’s wavelets;
level of the wavelet decomposition; value of the thresholding parameter to process
the detail coefficients. Moreover, in this work was shown too that the use of the
biorthogonal wavelet family allows obtaining better results in terms of the used
criteria. In this reason we use the family of biorthogonal wavelets for the following
signals processing.

The analysis of the obtained results allows us to conclude that biorthogonal
wavelet bior1.1 is optimal to process IMFs_1 and IMFs_2 functions in the case of
the first synthetic signal use. In the case of the second synthetic signal processing the
wavelet bior1.5 is optimal for IMFs_1 function and the wavelet bior1.1 is optimal
for IMFs_2 one. The values of the Shannon entropies ratio in these cases are the
minimal ones.

The results of the proposed technique implementation for purpose of the wavelet
decomposition optimal level determination are presented in Figure 1.11. The level
of the wavelet decomposition was changed within the range from 3 to the maximum
level depending on the type of the studied signal. The minimal boundary value was
determined empirically. The results of the simulation have shown that in the case
of the first synthetic signal use, the optimal level of the wavelet decomposition is 8
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Figure 1.11: Charts of the Shannon entropies ratio vs the wavelet decomposition
level
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Figure 1.12: Charts of the Shannon entropies ratio vs the thresholding coefficient
value

for the mode 1 and 7 for the mode 2. In the case of the second synthetic signal use
the optimal levels are 6 and 8 for the mode 1 and the mode 2 respectively. These
parameters were used during the following data processing.

Figure 1.12 presents the results of the simulation concerning determination of
the thresholding coefficients optimal values to process the detail coefficients at the
levels of wavelet decomposition from 1 to n in accordance with the formula (1.3).
The range and the step of the thresholding coefficient change were determined in
accordance with the step 9 of the hereinbefore described algorithm. As the results,
the optimal values of the thresholding coefficients were determined for each of the
allocated IMFs functions.

The final stage of the data processing is the signal reconstruction with the use
of both the processed and non-processed IMFs functions. The results of the wavelet
filter optimal parameters determination and relative change of the Shannon entropy
for both the filtered and initial signals in percentages calculated by the formula (1.7)
are presented in Table 1.1.

Figure 1.13 presents the results of the synthetic signals filtering. The analysis of
the obtained results allows us to conclude that the relative change of the Shannon
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Table 1.1: Parameters of the wavelet filter in the cases of the synthetic signals
processing

Signal Function Parameters ErrorWavelet Level THR

1 IMFs_1 bior1.1 8 1.07e-6 0.92%IMFs_2 bior1.1 8 5.8e-7

2 IMFs_1 bior1.5 6 0.069 0.42%IMFs_2 bior1.1 6 0.607

Figure 1.13: Results of the synthetic signals filtering
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entropy criterion calculated for the initial and the filtered signals are less than one
percent for the both synthetic signals. This fact indicates the high effectiveness of
the proposed technique. Moreover, the results of the simulation have also shown
that the proposed technique is not so greatly sensitive to the thresholding coefficient
value as in the case of the direct use of the wavelet analysis for the signal filtering.
This fact can be explained in the following way. The use of the Huang transform
allows us to select the noised components of the signal, which are processed at the
next stage of the algorithm implementation. The components without noise are
not processed. Thus, a little change of the thresholding coefficient value does not
significantly influence the results of the signal as in the case of the direct use of the
wavelet analysis for the signal denoising.

1.5.2 Results of the AE Signals Filtering

Figure 1.14 presents the result of the Huang empirical modes decomposition imple-
mentation for the acoustic emission (AE) signal which is shown in Figure 1.7g. The
same results were obtained for other AE signals. The analysis of the IMFs functions
allows us to conclude that in this case the first and the second modes contain the
noise component too, thus these modes should be processed in order to denoise the
signal. Figure 1.15 presents the results of the simulation concerning determina-
tion of the optimal wavelet from the family of the biorthogonal ones in terms of
the minimum value of the criterion (1.7). The results of the simulation have shown
that the biorthogonal wavelet bior1.1 is the optimal one for processing both the
IMFs 1 and IMFs 2 functions since the criterion values of Shannon entropies ratio
which have been calculated by the formula (1.7) achieved the minima values in these
cases. Figure 1.16 shows the results of the simulation concerning determination of
the optimal wavelet decomposition level in the cases of the use of both the IMFs 1
and IMFs 2 functions. The analysis of the obtained charts allows concluding that
the wavelet decomposition levels 7 and 8 are the optimal in terms of the criterion
(1.7) minima values for the both IMFs functions. Figure 1.17 presents the same
results in the case of the thresholding coefficient optimal values determination. The
range and the step of the thresholding coefficient value change were determined in
accordance with the steps 3.2 and 3.3 of the hereinbefore described algorithm. The
value of multiplier δ was taken as 0.5. The optimal value of the thresholding coeffi-
cient was determined as the first achieved of the global minimum within the range
of this parameter change. The thresholding coefficient values τ1 = 1.47 · 10−3 and
τ2 = 1.16 · 10−3 were determined for the IMFs 1 and the IMFs 2 functions respec-
tively as the result of this stage implementation. These values were used to process
the detail coefficients within the framework of the proposed technique.

The final stage of the hereinbefore described procedure is the reconstruction
of the signal with the use of both the processed and unprocessed IMFs functions.
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Figure 1.14: The result of the Huang transform
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Figure 1.15: Results of the simulation concerning determination of the biorthogonal
wavelet optimal type

Figure 1.16: Charts of the Shannon entropies ratio vs the wavelet decomposition
level
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Figure 1.17: Results of the simulation to determine the thresholding coefficient
optimal values

Figure 1.18 presents the results of the simulation concerning filtering the AE signal
using parameters of the wavelet filter which were determined within the framework
of the proposed technique. The analysis of the obtained results indicates the high
effectiveness of the proposed technique, since the level of noise in the signal in Figure
1.18b is significantly less in comparison with the level of noise in the initial signal
(Figure 1.18a). Table 1.2 presents the values of wavelet filter optimal parameters
which were determined within the framework of the proposed technique for the
AE signals which have been shown in Figure 1.7. In all cases the biorthogonal
wavelet bior1.1 was determined as an optimal one in terms of the minimum value
of the criterion (1.7). The results of the simulation concerning filtering the AE
signals which have been shown in Figure 1.7 are presented in Figure 1.19. The
analysis of the obtained results allows concluding that the level of noise component
in signals in Figure 1.19 is significantly less in comparison with the noise level
in appropriate initial signals which are shown in Figure 1.7. It should be noted,
that local particularities of the signals have not been changed during the signals
processing. Moreover, the filter parameters are adapted to the filtered component.
In all cases the parameters are determined empirically based on the minimum value
of the quality filtration criterion.
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Figure 1.18: Results of the AE signal filtering

Table 1.2: Parameters of the wavelet filter in the cases of the AE signals processing
Weight,N 190 212 270 362
Modes M1 M2 M1 M2 M1 M2 M1 M2
Level 8 8 8 2 7 2 8 2

THR,10−3 0.66 0.31 0.37 0.24 0.64 0.25 0.8 0.71
Weight,N 378 381 382 393
Modes M1 M2 M1 M2 M1 M2 M1 M2
Level 8 2 3 3 7 8 2 3

THR,10−3 0.95 0.55 0.75 0.82 1.47 1.16 0.89 0.47
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Figure 1.19: The final results of the AE signals filtering
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1.6 Conclusions
The technique of 1-D noised signals filtering based on the complex use of empirical
mode decomposition (EMD) method (Huang transform) and wavelet analysis has
been presented in this chapter. Implementation of this technique involves the follow-
ing stages: in the beginning, the Huang transform has been performed to decompose
the initial signal into the IMFs functions (modes). The modes with noise are allo-
cated at this stage; then, the optimal parameters of the wavelet filter have been
determined for each of the selected modes. The wavelet filtering of the allocated
modes is performed as the result of this stage implementation; finally, the recon-
struction of the signal has been carried out with the use of both the processed and
non-processed IMFs functions. The ratio of Shannon entropies which are calculated
for both the filtered signal and the allocated noise component has been used as the
main criterion to determine the wavelet filter optimal parameters. The effectiveness
of the proposed technique was estimated with the use of both the synthetic and
acoustic emission (AE) signals obtained as the result of the experiment concern-
ing identification of the structural particularities of the mechanism of the materials
deforming based on the AE signals analysis. The family of biorthogonal wavelets
has been used during the simulation process. The optimal wavelet decomposition
level and the thresholding coefficient value for each of the allocated IMFs functions
have been determined during the simulation process. The practical implementation
of the proposed technique has shown its high effectiveness since the level of noise
component in the filtered signals was significantly less in comparison with the level
of the noise in appropriate initial signals. Moreover, the local particularities of the
signals have not been changed during the signals processing.



Chapter 2

Objective Clustering Inductive
Technology

2.1 Introduction
One of the current directions of modern Data Science is data clustering [92, 33, 38,
136]. Implementation of this technique allows us to divide the objects or features
into groups considering the level of their mutual similarity. There are a lot of
clustering algorithms nowadays. Choice of the appropriate algorithm is determined
by type and particularities of the investigated data. So, in the papers [92, 33, 136] the
authors presented the results of the research concerning application of both k-means
and fuzzy c-means clustering algorithms to cluster analysis of complex data. The
paper [88] is devoted to implementation of DBSCAN clustering algorithm to detect
communities in social networks. The tasks concerning implementation of both self-
organizing SOTA and hierarchical clustering algorithms are solved in [38, 61, 123].
The results of the research concerning practical implementation of self-organizing
neural networks (Kohonen Map) are presented in [55, 128]. However, it should be
noted that result of appropriate clustering algorithm operation in the most cases
depends on its initial parameters. Setup of these parameters is not easy task and
this step is usually implemented empirically during the simulation process taking
into account the aim of the solved task.

Evaluation of clustering quality is another task which has not unambiguous so-
lution nowadays. There are a lot of internal clustering quality criteria which allows
estimating the character of both the objects distribution within the clusters and the
clusters distribution in the features space. These criteria are implemented as the
functions in the package clusterCrit [44] of R software [75]. However, the results
of the simulation, which were carried out in [21] have shown inconsistence of these
criteria in the case of the use of similar datasets. As results of the simulation, the au-

29
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thors in this paper proposed the complex internal clustering quality criterion which
is calculated as the multiplicative combination of the Calinski-Harabasz criterion
[37] and WB-index [149].

However, as a rule, the internal criteria do not always allow us to divide the
objects into clusters objectively. One of the current problems of the existing clus-
tering algorithms is the reproducibility error. In other words, successful clustering
results obtained on one dataset do not repeat while using another similar dataset.
Reduction of this error can be achieved by careful verification of the obtained model
using "fresh information", which was not used during the model making. A higher
degree of coincidence between the clustering results on the similar datasets corre-
sponds to a higher degree of the obtained model objectivity. This idea is the basis
of the objective clustering inductive technology, the main conception of which was
presented in [102, 78] and further developed in [131, 142, 14]. Implementation of this
technology involves determination of the optimal clustering based on the extremum
value of the complex balance criterion which contains as the components both the
internal and external clustering quality criteria. The practical implementation of
the objective clustering inductive technology based on the k-means, agglomerative
hierarchical, self-organizing SOTA, density-based DBSCAN and OPTICS clustering
algorithms were presented in [20, 15, 9, 22].

This chapter presents the results of the authors’ research concerning development
of the objective clustering inductive technology and its practical implementation
based on various clustering algorithms.

2.2 Basic Concepts of the Objective Clustering Induc-
tive Technology

2.2.1 Problem Statement

Let the initial dataset of the objects is a matrix: A = {xij} , i = 1, . . . , n; j =
1, . . . ,m, where n is the number of the studied objects; m is the number of fea-
tures characterizing the objects. The aim of the clustering process is a partition of
the objects into non-empty subsets of pairwise non-intersecting clusters, herewith a
surface which divides the clusters can take any shape:

K = {Ks}, s = 1, . . . , k;K1 ∪K2 ∪ · · · ∪Kk = A;Ki ∩Kj = ∅, i 6= j,

where k is the number of clusters, i, j = 1, . . . , k. Inductive model of objective
clustering assumes a sequential enumeration of clustering in order to select from
them the best variants. Let W is the set of all admissible clustering for given set A.
The best objective on quality criteria QC(K) is the clustering for which is:

Kopt = arg min
K⊆W

CQ(K) or Kopt = arg max
K⊆W

CQ(K)
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Figure 2.1: Charts of the modules interaction within the objective clustering induc-
tive technology

Clustering Kopt ⊆W is an objective if there is the least difference of this clustering
from an expert one in terms of the objects number, the character of the objects
distribution in the appropriate clusters and the quantity of discrepancies [102]. Fig-
ure 2.1 shows the chart of the modules interaction within the objective clustering
inductive technology. As it can be seen, implementation of this technology assumes
the following stages:

1. Assignment an affinity function of studied objects, i.e., finding the metric to
determine the degree of objects, clusters and objects and clusters similarity.

2. Development of the algorithm to partition the initial set of the objects into two
equal power subsets. The equal power subsets are the subsets which contain
the same number of pairwise similar objects.

3. Assignment a method of clusters formation (sorting, regrouping, grouping,
division, etc.).

4. Assignment the clustering quality criteria: internal, external an complex bal-
ance.

5. Organization of motion to the extreme or optimal value of the clustering quality
criteria.

6. Assignment an objective clustering fixation method corresponding to the ex-
treme values of the used criteria.
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2.2.2 Principles of the Objective Clustering Inductive Technology

Three fundamental principles, borrowed from different scientific fields allowed us to
create the complete, organic and interconnected theory. These principles are the
basis of the methodology of the complex systems inductive modeling [125, 110]:

• the principle of heuristic self-organization, i.e., sequential enumeration of var-
ious complicating models-applicants in order to select from them the best
models by a group of criteria for assessing the quality of the model operation;

• the principle of external addition, i.e., the necessity of the use «fresh informa-
tion» for purpose of objective verification of the models;

• the principle of inconclusive of solution, i.e., generation a set of intermediate
results in order to select from them the best variants.

Implementation of these principles in the adapted version provides the conditions
to create the methodology of objective clustering inductive technology.

Principle of sequential enumeration

Objective clustering inductive technology assumes a sequential enumeration of the
clustering within the admissible range with the use of two equal power subsets
which contain the same quantity of pairwise similar objects. The clustering result is
estimated at each step of this procedure implementation by calculating the internal
and external clustering quality criteria, which consider the character of objects and
clusters distribution in various clustering and the difference of the clustering results
obtained on two equal power subsets. The model self organizes in such a way that
the better clustering correspond to the extreme values of these criteria.

Principle of external addition

Implementation of this principle within the framework of the objective clustering
inductive technology assumes the existence of two equal power subsets, which contain
the same number of pairwise similar objects. Clustering is carried out on these
subsets concurrently during the algorithm operation with sequential comparison of
the clustering results by the use of both the internal and external clustering quality
criteria. The idea of the algorithm to divide the initial dataset into two equal power
subsets A and B is stated in [77] and further developed in [125]. Implementation of
this algorithm assumes the following steps:

1. Calculation of n× (n− 1)
2 pairwise distances between the objects in the initial

dataset. The result of this step is a triangular matrix of the distances.
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Figure 2.2: An example of objects and clusters distribution in OCIT

2. Allocation of the pairs of objects Xs and Xp, the distance between which is
minimal:

d(Xs, Xp) = min
i,j

d(Xi, Xj);

3. Distribution of the object Xs to subset A, and the object Xp to subset B.

4. Repetition of the steps 2 and 3 for the remaining objects. If the number of
objects is odd, the last object is distributed to the both subsets.

Principle of inconclusive of solution

Implementation of this principle involves a fixation of clustering which correspond
to the extreme values of complex balance clustering quality criterion, which includes
as the components both the internal and external criteria. Each local extremum
corresponds to an objective clustering with a certain degree of detailing. The final
choice and therefore the fixation of the clustering is determined by the goals of the
current task.

2.2.3 Clustering Quality Criteria

Figure 2.2 shows an example of both the objects and clusters distribution within
the framework of the objective clustering inductive technology (OCIT). It is obvious,
that the best clustering corresponds to the higher density of the objects grouping
relative to the mass centers of the clusters where these objects are allocated on the
one hand, and the less density of the clusters’ mass centers distribution in the feature
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Figure 2.3: Model of objects and clusters distribution in two cluster structure

space on the other hand. Moreover, the difference of the clustering results obtained
on the equal power subsets should be minimal. Thus, to implement this technology it
is necessary to determine for the investigated data the proximity metric, the internal,
the external and the complex balance clustering quality criteria.

Comparison analysis of the proximity metrics

In [21] the authors presents the results of the research concerning comparison of
the three well known metrics to estimate the proximity level of high-dimensional
numeric vectors: Manhattan, Euclidean and correlation distances. Evaluation of
the metrics effectiveness was performed using the synthetic data representing the
gene expression profiles of the objects in two different clusters (see Figure 2.3).
Gene expression profile in this case means the vector of gene expressions, the values
of which were determined for different samples. The gene expression is presented as
a numeric value. Centers of the corresponding clusters within the framework of the
model were calculated as follows:

Cs = 1
Ns

Ns∑
i=1

xs
i ,

where Ns is the quantity of gene expression profiles in cluster s, xs
i is i-th profile in

cluster s. The simulation process consisted the following steps:

• calculation of the average distance dint from the profiles to the clusters’ centers,
where these profiles were allocated:

dint(Xs,p, Cs,p) = 1
N

 Ns∑
i=1

d(xs
i , Cs) +

Np∑
j=1

d(xp
j , Cp)

 ;

• calculation the average distance dext from the profiles to the centers of the
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neighbouring clusters:

dext(Xs,p, Cs,p) = 1
N

 Ns∑
i=1

d(xs
i , Cp) +

Np∑
j=1

d(xp
j , Cs)

 ;

• calculation the relative coefficient:

drel(Xs,p, Cs,p) = dext(Xs,p, Cs,p)
dint(Xs,p, Cs,p) ;

Higher value of the relative coefficient corresponds to the higher separating ability
of the used proximity metric.

Evaluation of the used metrics effectiveness was performed with the use of gene
expression profiles of patients which were investigated on lung cancer disease. The
data were submitted from database Array Express [30] and they included the gene
expression profiles of 96 patients, 10 of which were healthy and 86 patients were
divided by the state of the health severity into three groups (Well, Moderate and
Poor). Each of the profiles included 7129 of genes. To evaluate the appropriate
metric effectiveness the group of the health patient (10 profiles) and the group of
patients with poor state of health (21 of profiles) were used. The results of the
simulation are shown in Figure 2.4.

The analysis of obtained results allows us to conclude that in the case of high di-
mensional gene expression profiles use the correlation metric has significantly higher
separating ability in comparison with Euclidean and Manhattan metrics since the
values of the relative criterion, which is calculated based on the correlation distance,
are higher in comparison with the use of Euclidean and Manhattan distances. How-
ever, in the case of low dimensional data the Euclidean metric has higher separating
ability level. Thus, the choice of the proximity metric depends on type of the inves-
tigated data. Hereinafter, we will use the Euclidean and correlation metrics for low
and high dimensional data respectively.

The internal and the external clustering quality criteria

As it was noted hereinbefore, it is obvious that the qualitative clustering corresponds
to the less density of the clusters distribution and higher density of the objects
concentration inside the clusters. Thus, the internal clustering quality criterion
should be complex and considering both the objects distribution inside different
clusters and the clusters distribution in the features space. The first component of
the complex internal criterion is calculated as an average distance from the objects
to the mass centers of the clusters, where these objects are allocated:

QCW = 1
N

K∑
s=1

Ns∑
i=1

d(xs
i , Cs) (2.1)
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Figure 2.4: Charts of the relative criterion values distribution using different metrics:
a) box plot; b) kernel density plot
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Table 2.1: Internal clustering quality criteria
N Index Short name Ref. Rule
1 Banfeld Raftery BR [28] min
2 C index C_index [74] min
3 Calinski Harabasz CH [37] max
4 WB index WB [149] min
5 PBM PBM [27] max
6 Ray Turi RT [118] min
7 Xie Beni XB [139] min
8 Silhouette SH [124] max
9 Gamma GM [25] max

The second component of this criterion, which takes into account the particularities
of the clusters distribution in the feature space, is calculated as an average distance
between the mass centers of the clusters:

QCB = 2
K(K − 1)

K−1∑
i=1

K∑
j=i+1

d(Ci, Cj) (2.2)

where K is the quantity of clusters; N is the general quantity of objects; Ns is the
quantity of the objects in cluster s; xs

i is the i-th vector in cluster s; Ci, Cj and Cs

are the mass centers of the clusters i, j and s respectively, d(·) is the metric used to
estimate the proximity level of the studied vectors. Various combinations of these
components allow us to calculate the internal clustering quality criteria.

Package clusterCrit [44] of R software [75] contains various functions to calculate
the internal clustering quality criteria. Of course, selection of appropriate criterion
is determined by type of the studied data and this choice should be performed in
each case empirically using synthetic dataset. Below, we present the technique to
determine the internal clustering quality criteria in the case of high dimensional gene
expression profiles use. Criteria which were used during the simulation process are
presented in Table 2.1.

To estimate the effectiveness of the internal clustering quality criteria the gene
expression profiles of lung cancer patients were used [30] as the experimental data.
Firstly, the data were divided into two equal power subsets with the use of the
algorithm that had been presented hereinbefore. Then, each of the subsets was
sequentially divided into clusters from Kmin = 2 to Kmax = 5. In the case of
two-cluster structure in the first cluster there were the gene expression profiles of
healthy patients (NORM) and gene expression of the patients with good state of
health (WELL), second cluster included the gene expression of the patients with
poor (POOR) and moderate (MODERATE) states of health. In the case of three-
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cluster structure the first cluster contained the data of the healthy patients, the
second one contained the data of the patients with good state of health, the third
cluster included the gene expression of the patients with poor and moderate states
of health. In the case of four-cluster structure the first cluster contained the data
of the healthy patients, the second cluster contained the data of the patients with
good state of health, the third cluster included the gene expression of the patients
with poor state of health and the fourth cluster contained the gene expression of
the patients with moderate state of health. To obtain a five-cluster structure the
gene expression profiles of the patients with moderate state of health were divided
into two groups randomly. The optimal clustering in this case corresponded to four-
cluster structure. To estimate the proximity level of the appropriate vectors, we used
the correlation metric. Figure 2.5 shows the charts of the internal clustering quality
criteria for equal power subsets A and B versus the clusters quantity. As it can be
seen from Figure 2.5, only the criteria WB,CH,PBM and SH allows derermining
optimal clustering since their extrema correspond to four clusters structure.

The external clustering quality criterion was calculated as the normalized differ-
ence of the internal clustering quality criteria determined for the equal power subsets
A and B:

QCext(A,B) = |QCint(A)−QCint(B)|
QCint(A) +QCint(B) . (2.3)

This choice is determined by the following reason: the equal power subsets contains
the mutually similar objects. In the case of applying the clustering algorithm with
the same parameters the character of both the clusters and objects distributions in
the clustering obtained on these subsets should be almost the same. As a result, the
internal criteria values in this case should have minimal difference between each other
and their normalized difference for the objective clustering should has extremum.

Figure 2.6 shows the charts of the external clustering quality criteria, which
were calculated based on the selected internal criteria versus the clusters quantity.
The analysis of the obtained charts allows us to conclude that PBM criteria is not
reasonable in this case since the external criterion which was calculated based on
appropriate internal criteria does not allow us to distinguish the objective clustering.
The external criterion calculated based on SH index has the brightest minimum.
However, the negative values of the SH internal criterion for some clustering (3) can
complicate the results interpretation in more complicated cases. Thus, the criteria
CH andWB are optimal ones to determine the objective clustering in terms of both
the internal and external clustering quality criteria. As a result of the simulation we
have proposed the complex internal clustering quality criterion which is calculated
as multiplicative combination of CH and WB criteria:

QCint = QCW B

QCCH
= K(K − 1)QCW 2

(N −K)QCB2 ; (2.4)
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Figure 2.5: Charts of the internal clustering quality criteria versus the clusters
quantity
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Figure 2.6: Charts of the external clustering quality criteria versus the clusters
quantity

where K is the quantity of clusters; N is the quantity of the objects. The minimum
value of this criterion corresponds to optimal clustering.

It should be noted, we have estimated the effectiveness of this criterion using
various types of data sets and this applying really allowed us to determine the
optimal clustering in various cases. So, we will use the criterion (2.4) as the internal
one for the following research. However, we do not want to conclude that this
criterion is the best in all cases. As we remarked hereinbefore, the choice the internal
criterion depends on type of investigated data and this step should be performed in
each case empirically.

Balance clustering quality criterion

The necessity of the balance clustering quality criterion is determined by the follow-
ing reasons. Of course, the objective clustering corresponds to the minimum values
of the internal and the external clustering quality criteria. However, it is possible
that the extrema of these criteria are disagree between each other. Thus, in this case
it is necessary to determine the balance criterion which considers both the character
of the objects and the clusters distribution in various clustering and the difference
between clustering, which are implemented on the two equal power subsets. To cal-
culate this criterion we used Harrington desirability function [66]. The chart of this
function is shown in Figure 2.7. Calculation of this criterion assumes the following
steps:

1. Transformation of scales of the internal and the external clustering quality
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Figure 2.7: Harrington desirability function

criteria into reaction scale Y in the following way:

Y = a− b ·QC

where a and b parameters which are are determined empirically considering
the boundary values of the appropriate clustering quality criteria:{

Ymax = a− b ·QCmin

Ymin = a− b ·QCmax

2. Calculation of the Yi non-dimensional parameter for each of the used criteria:

Yi = a− b ·QCi

3. Calculation of the private desirabilities for each of the criteria:

di = exp(−exp(−Yi))

4. Calculation of the balance clustering quality criterion as the geometric average
of all private desirabilities:

QCbal = r

√√√√ r∏
i=1

di (2.5)

where r is the number of both the internal and external clustering quality
criteria.
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Figure 2.8: Charts of the a) complex internal, b) external and balance clustering
quality criteria

The maximum value of this criterion corresponds to the optimal clustering in terms
of the used criteria.

Figure 2.8 presents the charts of the complex internal, external and balance
clustering quality criteria varsus the number of clusters which were calculated using
two equal power subsets. Analysis of the obtained results indicates the high effec-
tiveness of the used criteria for determining the objective clustering. The extreme
values of all criteria correspond to four-cluster structure of the investigated objects
grouping.

2.2.4 Structural Block-Chart of the OCIT

Figure 2.9 shows the structural block-charts of the objective clustering inductive
technology. Its implementation involves the following steps [9]:

1. Preparing, analysing and preprocessing the investigated data. The data is
formed as a matrix, where number of rows is a number of the studied ob-
jects and number of columns is a number of the features which characterized
the objects. The preprocessing stage involves the following: missing values
processing, normalization, filtering, at al.

2. Choice of the proximity metric taking into account both the type and par-
ticularities of the investigated vectors (Euclidean, Manhattan, correlation at
al.).
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Figure 2.9: Structural block-chart of the OCIT
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3. Division of the initial dataset into two equal power subsets (contains the same
quantity of the pairwise similar objects).

4. Choice of the clustering algorithm. Setup of its initial parameters and range
of these parameters change.

5. Implementation of the clustering algorithm on the equal power subsets within
a given range of the algorithm parameters change. Fixation of the clustering at
each step of this procedure implementation. Calculation of both the internal
and the external clustering quality criteria by the formulas (2.3) and (2.4) in
the cases if the quantity of the clusters in the different clustering are the same
ones.

6. Calculation of the complex balance clustering quality criterion by the formula
(2.5).

7. Results analysis. Fixation of intermediate solutions which correspond to the
maxima values of the complex balance criterion.

8. Comparison analysis of the intermediate sollutions and fixation of the final co-
lution consitering the aim of the current task. Determination of the algorithm
parameters which correspond to the optimal clustering.

9. Data clustering with the use of the current clustering algorithm using deter-
mined before parameters. Final results formation.

2.3 Practical Implementation of the Objective Cluster-
ing Inductive Technology

Practical implementation of the OCIT is possible based on various clustering algo-
rithm. Choice of clustering algorithm is determined by type of the studied data
and aim of the current task. However, in any case it is necessary to determine the
optimal algorithm parameters or to choose the optimal hierarchical level in the case
of hierarchical clustering algorithm use. In this section we solve this task within the
framework of the OCIT with the use of density-based DBSCAN and self-organizing
SOTA clustering algorithms.

2.3.1 Hybrid Model of OCIT Based on DBSCAN Clustering Algo-
rithm

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering
algorithm was proposed in 1996 as a solution of the problem to divide the data into
clusters of arbitrary shapes [50, 65].
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Let D is the database of the points in m-dimensional features space. The fol-
lowing definitions are the basis of DBSCAN clustering algorithm operation [50]:

Definition 1. The Eps-neighborhood of a point p is defined as follows:

Eps(p) = {q ∈ D|dist(p, q) ≤ EPS}

where dist(p, q) is the proximity distance between the points p and q.
Definition 2. A point q is directly density-reachable from a point p if the

following conditions are performed:{
q ∈ Eps(p)

NEP S(p) ≥MinPts

where NEP S(p) and MinPts are the number of points and the minimum number of
points within Eps-neighborhood of a point p respectively.

Definition 3. A point q is density-reachable from a point p if there is a chain
of points q1, ..., qn, q1 = p, qn = q such that qi+1 is directly density-reachable from
qi.

Definition 4. A point q is density-connected with a point p if there is a point
k such that both the points q and p are density-reachable from the point k.

Definition 5. A cluster C is a non-empty subset of a set of points D if the
following conditions are performed:

1. ∀p, q : if p ∈ C and q is density-reachable from p, then q ∈ C;

2. ∀p, q : if q is density-connected with p, then p, q ∈ C

Definition 6. Let Ci, i = 1, k is a set of the allocated clusters. The noise is the
set of points of the database D, which not belonging to any cluster Ci:

noise = {p ∈ D|∀i : p /∈ Ci, i = 1, k}

The key points, which are determined by hereinbefore definitions are shown in
Figure 2.10. Here, the point q is directly density-reachable from the point p, but
the point p is not directly density-reachable from the point q. The point q is density-
reachable from the point k, and the points p and h are density-connected through
the point k.

Implementation of DBSCAN clustering algorithm starts from initialisation of
EPS and MinPts values. Then, it is necessary to choose arbitrary point p and to
retrieve the points, which are density-reachable from p and density-connected to p.
If p is a core point, all of the found points are joined into cluster. If p is a border
point and no points which are density-reachable from p, escape to the next point of
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Figure 2.10: Keys points of DBSCAN clustering algorithm (MinPts = 3)

Figure 2.11: An example of sotred k-dist graph

the database. If the object is not a core point and it is not density reachable from
other points then, this object is identified as noise.

Thus, result of DBSCAN clustering algorithm operation depends on two pa-
rameters: EPS and MinPts. To determine the optimal EPS value for appropriate
MinPts the authors in [50] proposed the technique based on sorted k-dist graph (see
Figure 2.11). To authors’ mind, the optimal EPS value for appropriate MinPts
value should belong to knee of k-dist graph. However, it should be noted, that
implementation of this technique does not allow us to determine the EPS value
exactly. This fact influences the quality of the algorithm operation. The implemen-
tation of the proposed technique allows us to determine only the range of the EPS
values change for appropriate MinPts value. To solve this problem, we propose the
technique of the DBSCAN clustering algorithm optimal parameters determination
based on the objective clustering inductive technology.
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Structure block-chart of algorithm to implement the hybrid model of objective
clustering inductive technology based ob DBSCAN clustering algorithm is presented
on Figure 2.12. Implementation of the algorithm assumes the following steps:

1. Formation of the matrix of the investifated data. The matrix contains n rows
or studied objects and m columns or the objects attributes.

2. Division of the initial dataset into two equal power subsets.

3. Calculation of the distance matrix between the objects for both subsets using
correlation distance in the case of high-dimensional data. This distance matrix
is the input matrix for the next step of the algorithm operation.

4. Setup of DBSCAN clustering algorithm, choice of both the range and steps of
EPS and MinPts values change.

5. Fixation of MinPts value (MinPts = 3). Initialization of EPS = EPSmin.

6. Data clustering on the two subsets A and B using DBSCAN algorithm in the
range from EPSmin to EPSmax. Clustering fixation at each step of this
procedure implementation.

7. Calculation of both the internal and external clustering quality criteria at each
step of the algorithm operation.

8. Calculation of the balance clustering quality criterion.

9. Analysis of the balance clustering quality criterion values. Fixation of the
optimal value EPS which corresponds to the maximum value of this criterion.

10. Data clustering on the two equal power subsets A and B within the range
from MinPtsmin to MinPtsmax. Clustering fixation at each step of this
procedure implementation.

11. Repetition of the steps 7–9 of this algorithm for MinPts values. Fixation of
EPS and MinPts optimal values which correspond to the maximum of the
balance clustering quality criterion.

12. Investigated data clustering using obtained parameters of DBSCAN clustering
algorithm operation.
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Figure 2.12: Structure block-chart of algorithm to implement the hybrid model of
OCIT based on DBSCAN clustering algorithm
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Figure 2.13: Process of cell structure forming: a) initial state of the system; b) state
of the system after one cycle

2.3.2 Hybrid Model of OCIT Based on SOTA Clustering Algorithm

SOTA clustering algorithm (Self-Organizing Tree Algorithm) [47] is a type of self-
organizing neural networks based on the complex use of Kohonen maps and Fritzke
algorithm of spatial cell structure growing [57]. Opposed to Kohonen maps that
reflect a set of high dimensional input data on the elements of two-dimensional array
of small dimension, SOTA algorithm generates a binary topological tree. Fritzke
algorithm performs self-organization of output nodes of network in such a way that
quantity of the nodes increases in the field of higher density of objects concentration
and decreases in the field of lower density. Figure 2.13 shows the process of cell
structure form during SOTA clustering algorithm operation. Initially, the system
consists of two cells that are connected through an external root node. In other
words, the system has the structure of a binary tree (see Figure 2.13a). Each of the
cells or nodes is characterized by a feature vector, the number of elements in which
is equal to the dimension of the feature space of the studied data. Implementation
of SOTA algorithm assumes the following steps:

1. Initialization. Weights which are calculated as an average of the attributes of
all of the investigated vectors assign to both the root node and cell vectors. It
is obvious that in this case, the length of the vector of weights is equal to the di-
mension of the data feature space. Parameters for correction of the appropriate
cells weight setup in accordance with the following conditions:αw > αm > αs,
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where αw, αm and αs are parameters for weight correction of the winner cell,
root (parent) node and adjacent cell respectively. Also, we should setup a limit
value of the variation coefficient E which determines the stopping condition of
the algorithm operation.

2. Adaptation. The investigated vectors are applied to the input of all external
cells during the algorithm operation The degree of proximity of the corre-
sponding vector to the cell weight vector is calculated using the selected affin-
ity function. The winning cell, the vector of weights of which has the smallest
distance from corresponding vector is allocated in accordance with the princi-
ple of "winner takes everything". The weights of the winner cell, its adjacent
and root cells are adjusted in accordance with the formula:

Ci(τ + 1) = Ci(τ) + η · (Pj − Ci(τ)),

where Ci(τ) and Ci(τ + 1) are weight vectors for i cell at step τ and τ + 1
respectively; Pj is jth features vector which is entered to the system input; η is
the parameter that determines the step of adjusting the weights of the winning
cell. The alignment of the weights of the neighbouring relative to winning cell is
carried out in accordance with the principle: if the cell adjacent to the winning
cell has no offspring, the weights of the winning cell, the neighboring cell and
the root node are adjusted. Otherwise, only the winner cells are adjusted. The
parameter η at the t iteration is calculated as follows:

ηt = α · 1− t
n
· (1− bτ),

where t is the total number of vectors presented to the system input; n is the
maximum number of the investigated vectors; τ is the number of operations
in one cycle; b is the coefficient that determines the rate of the η parameter
change; α is the parameter for the weights correction of the appropriate cells.

3. Convergence of algorithm and network formation. To determine the structure
of a clustering tree, the coefficient of variation for each cell is calculated as an
average distance from the cell weights to the feature vectors in a current cell:

Ri =
∑K

k=1 d(Pk, Ci)
K

,

where Ci is the weight vector for ith cell; Pk is the feature vector in this cell; K
is the maximum number of the investigated vectors in ith cell. The total value
of the variation coefficient is determined as the sum of the variation coefficients
of all external cells:

εt =
S∑

i=1
Ri.
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The criterion for estimating the algorithm convergence is the relative change
in the total variation coefficient:

|εt − εt−1
εt

| < E, (2.6)

where E is the boundary value of relative change of the variation coefficient.
If the condition (2.6) is not fulfilled, the further growth of the tree after each
cycle begins from the cell, which has the greatest value of relative change of
the variation coefficient. This cell divides into two parts and becomes a root
node (see Figure 2.13b). The values of the weight coefficients of the daughter
cells and root node are identical. The algorithm is stopped if condition (2.6)
is satisfied. Thus, the adjusting the value of the boundary parameter allows
us to achieve the desired network structure and, as a result, to get the desired
structure of the objects distribution in the clusters.

An analysis of hereinbefore described procedure allows concluding that the clus-
tering results in this case is determined by the parameters for the correction of cell
weights and the boundary value of relative change of the variation coefficient. In this
section we present the results of the research concerning determination of the SOTA
clustering algorithm optimal parameters within the framework of the OCIT [22, 15].
Implementation of this procedure assumes that weight coefficients of the parent’s
and winner’s cells are determined automatically: pcell = scell×5; wcell = pcell×2.
This ratio is recommended by the authors of the algorithm [47]. The block chart
of the algorithm to implement the objective clustering inductive technology based
on SOTA clustering algorithm is shown in Figure 2.14. The implementation of this
model involves the following steps:

1. Presentation of the studied data as a matrix n ×m, where n is the quantity
of the studied objects or rows and m is the quantity of attributes or columns.

2. Division of the initial data set into two equal power subsets.

3. Setup of SOTA clustering algorithm. Setting of the scell weight parameter
initial value, the range and the step of its change.

4. Data clustering on the equal power subsets A and B concurrently. The clus-
ters formation and calculation the internal and the external clustering quality
criteria within a range of the algorithm parameters change.

5. Calculation of the balance clustering quality criterion. Fixation of the optimal
value scell parameter corresponding to the maximum value of the balance
criterion.
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Figure 2.14: Block chart of the algorithm to implement the OCIT based on SOTA
clustering algorithm
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6. Setting of the initial value of the maximum divergence parameter, range, and
step of its change.

7. Repeating step 4 of this procedure. Fixation of the optimal maximum diver-
gence parameter.

8. Full data clustering by SOTA clustering algorithm using the optimal parame-
ters of the algorithm operation.

2.4 Experiments

2.4.1 Experimental Datasets

Evaluation of the hereinbefore presented clustering techniques was performed using
the following datasets:

• Datasets of School of Computing of University of Eastern Finland [54]: Aggre-
gation [60], Compound [145], Multishapes [87] and Jain [80]. These datasets
contain objects that form in two-dimensional space clusters of different shapes.
The character of the clusters distribution for the investigated data is shown in
Figure 2.15.

• Fisher’s Iris [116]. This dataset consists of 3 different types of irises’ (Setosa,
Versicolour, and Virginica) petal and sepal length, stored in a 150x4 array. The
rows being the samples and the columns being: Sepal Length, Sepal Width,
Petal Length and Petal Width. Figure 2.16 shows the irises’ dataset using
parallel coordinates plot. As can be seen from the figure, the profiles of objects
belonging to the Setosa class differ from objects of the Virginica and Versicolor
classes. This fact allows uniquely identifying the Setosa class. Objects of both
Virginica and Versicolor classes have some intersection between each other.
Moreover, each of the classes contains objects whose profiles are differed from
objects of the general group of the appropriate class. This fact can mean that
these profiles can be classified as noise or these objects can be grouped into a
separate cluster.

• Database of patients which were investigated on lung cancer disease. The data
were submitted from database Array Express [30] and they included the gene
expression profiles of 96 patients, 10 of which were healthy and 86 patients
were divided by the state of the health severity into three groups: 24, 41 and
21 patients with well, moderate and poor state of health respectively.

• Dataset moe430a which contains gene expression profiles obtained by DNA
microchip experiments [32]. These profiles contain information concerning
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Figure 2.15: Datasets of School of Computing of University of Eastern Finland
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Figure 2.16: Fisher’s irises dataset

expression of genes from mesenchymal cells of two types: neural crest and
mesoderm. 22 of gene expression profiles were used in the simulation process.
In the first case the data contained 147 of genes, in the second case there are
1000 of gene expression profile. This type of profiles was used to evaluate the
effectiveness of the model based on the SOTA clustering algorithm.

Initially, the data were divided into two equal power subsets using hereinbefore
described algorithm.

2.4.2 Results of DBSCAN Clustering Algorithm Operation

As was described in the section 2.3.1, the result of DBSCAN clustering algorithm
operation depends on two parameters: MinPts and EPS. The technique of these
parameters determining involves fixing MinPts = 3 at the first stage and following
step-by-step changing of EPS values in given range with calculation of the balance
clustering quality criterion at each step of this procedure implementation. Then, the
EPS values corresponding to the maxima of the balance criterion are fixed and the
MinPts values are changed from 3 to maximum one with calculation of the balance
clustering quality criterion. The range of the EPS value changing is determined
based on the sorted k-dist graph analysis. The best decisions concerning choice of
the optimal algorithm parameters correspond to the maxima values of the balance
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Figure 2.17: Results of the simulation for Aggregation dataset: a) sorted k-dist graph
for equal power subset A; b) sorted k-dist graph for equal power subset B; c) chart
of the balance criterion vs the EPS value for MinPts = 3; d) chart of the balance
criterion vs the MinPts for optimal EPS values

criterion for each combination of the parameters. Finally, the final solution is taken
based on comparison analysis of the intermediate solution considering the aim of the
current task.

Figure 2.17 presents the results of the simulation for Aggregation dataset. The
range of EPS value changing from 0.1 to 0.15 and the step 0.001 were determined
as the results of the sorted k-dist graphs analysis (Figure 2.17a,b). Two EPS
values (0.11 and 0.14) were determined as the result of the Figure 2.17c analysis.
Figure 2.17d shows the charts of the balance criterion versus theMinPts values for
the selected EPS values. As a result of this charts analysis the following algorithm
parameters combinations were determined: a) EPS = 0.11,MinPts = 3; b) EPS =
0.14,MinPts = 4. Results of the data clustering are presented in Figure 2.18. As it
can be seen from Figure 2.18, the clustering results is satisfactory in the both cases
since there are not any intersection between the obtained clusters. Moreover, in the
first case (Figure 2.18a), all clusters are well identified, but the number of points
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Figure 2.18: Clustering results for Aggregation dataset

identified as noise is greater than in the second case (Figure 2.18b). However, in the
second case the two clusters are connected with each other and they are not identified
as the separate clusters. The choice of parameters in this case is determined by the
goals of the current task.

Figure 2.19 presents the results of the simulation in the case of Compound
dataset use. The range of the EPS value change was setted from 0.1 to 0.2 based
on sorted k-dist graphs analysis (Figure 2.19a,b). Step of this parameter changing
was taken as 0.002. Three EPS values were selected for the following analysis based
on Figure 2.19c analysis: 0.13, 0.166, 0.19. Three combinations of the algorithm
parameters were determined as the results of Figure 2.19d analysis: a) EPS = 0.13,
MinPts = 3; b) EPS = 0.166, MinPts = 3; c) EPS = 0.19, MinPts = 3. The
detail analysis of the obtained results has shown that in the first casethere were the
different number of clusters in the obtained clusterings. This fact does not satisfy
the condition of the objective clustering. Results of the data clustering for both
the second and third cases are presented in Figure 2.20. As it can be seen from
Figure 2.20, the algorithm distinguishes well the points with low density of their
distribution in the feature space. These points are identified as noise. The smaller
EPS value corresponds to the better resolution of the algorithm (Figure 2.20a).

Results of the simulation in the case of Jain dataset use are presented in Figure
2.21. The following EPS values were determined as the results of sorted k-dist
graphs analysis (Figure 2.21a,b):EPSmin = 0.2, EPSmax = 0.35, step of the EPS
value change = 0.005. Two EPS values were determined as the result of Figure
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Figure 2.19: Results of the simulation for Compound dataset: a) sorted k-dist graph
for equal power subset A; b) sorted k-dist graph for equal power subset B; c) chart
of the balance criterion vs the EPS value for MinPts = 3; d) chart of the balance
criterion vs the MinPts for optimal EPS values
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Figure 2.20: Clustering results for Compound dataset

2.21c analysis: 0.265 and 0.31. Two combination of the algorithm parameters were
determines as the result of Figure 2.21d analysis: a) EPS = 0.31, MinPts = 3; b)
EPS = 0.31, MinPts = 5. Results of the clustering for Jain dataset are presented
in Figure 2.22.

Results of both the simulation and clustering for Multishapes dataset are pre-
sented in Figure 2.23 and Figure 2.24 respectively. As it can be seen, the
algorithm parameters combination EPS = 0.25, MinPts = 4 allows us to obtain
correct clustering in the case of Multishapes dataset use.

The analysis of the obtained results in the case of the use of two-dimensional
synthetic datasets containing clusters of different shapes has shown that the use of
DBSCAN clustering algorithm within the framework of the objective clustering in-
ductive technology allows us to group the investigated objects into clusters correctly.
The points with smaller density of distribution in the feature space in comparison
with density of other objects that make up the clusters are grouped into a separate
cluster. These points are identified as noise. In accordance with the principles of
the objective clustering inductive technology, the best solutions are formed during
the simulation process. These solutions correspond to the maximum values of the
balance clustering quality criterion and they are presented as the optimal combina-
tions of algorithm parameters. The choice of the final decision is determined by the
goals of the current task.

Figure 2.25 presents the same results in the case of Fisher’s irises dataset use.
In this case the EPS value was changed within the range from 0.5 to 1 with the
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Figure 2.21: Results of the simulation for Jain dataset: a) sorted k-dist graph for
equal power subset A; b) sorted k-dist graph for equal power subset B; c) chart of
the balance criterion vs the EPS value for MinPts = 3; d) chart of the balance
criterion vs the MinPts for optimal EPS values
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Figure 2.22: Clustering results for Jain dataset

step 0.01. The EPS optimal values 0.52 and 0.66 were determined for the following
analysis as the result of Figure 2.25c analysis. The simulation results have shown
that increasing the EPS value impaired the clustering results since the objects of
the Virginica and Versicolor classes were not distinguish between each other. The
following combinations of the algorithm parameters were determined as the result of
the Figure 2.25d analysis: a) EPS = 0.52, MinPts = 3; b) EPS = 0.66, MinPts
= 3. Clustering results for both cases are presented in Figure 2.26. The analysis of
the obtained results allows us to conclude that the first combination of parameters
leads to unsatisfactory clustering because in this case we get a large percentage of
objects that are identified as noise. Moreover, nine of Setosa class objects (18%) are
identified as objects of Versicolor class, what is not correct. In the second case, the
clustering results are significantly better. Objects of Setosa class are fully identified
excepting four objects which were identified as noise. The analysis of the parallel
coordinates plot (Figure 2.16) confirms that several objects of Setosa class are
differ from the other objects of this class. As expected, the objects of Versicolor and
Virginica classes overlap between each other. This fact also confirms the parallel
coordinates plot analysis. In this case 54% of objects of Versicolor class and 34%
of objects of Virginica class were identified correctly. 6% of objects of Versicolor
class and 20% of objects of Virginica class were identified as noise. 43% of objects of
Virginica and Versicolor classes were identified no correctly. However, it should be
noted that general quantity of objects which were identified as noise in this case was
17 from 150 (11%). This fact justifies the use of the proposed technique to reduce
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Figure 2.23: Results of the simulation forMultishapes dataset: a) sorted k-dist graph
for equal power subset A; b) sorted k-dist graph for equal power subset B; c) chart
of the balance criterion vs the EPS value for MinPts = 3; d) chart of the balance
criterion vs the MinPts for optimal EPS values
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Figure 2.24: Clustering results for Multishapes dataset

the feature space of high-dimensional data by removing the noise component.
Two thousand of gene expression profiles of patients which were investigated on

lung cancer disease were used as the experimental data in the case of evaluation
of effectiveness of the hybrid model of OCIT based on DBSCAN clustering algo-
rithm for high-dimensional gene expression profiles clustering. Initially, the data
were divided into two equal power subsets of 1000 profiles in each of them. Then,
the triangular distance matrixes were calculated for each of the subsets using cor-
relation metric. These matrixes were used us the input data during the DBSCAN
clustering algorithm implementation. Figure 2.27 presents the simulation results.
The following EPS values were determines as the results of Figure 2.27a analysis:
0.18, 0.35 and 0.44. At the next step we determined the optimal combinations of
the algorithm parameters based on Figure 2.27b analysis. We have obtained three
combinations: a) EPS = 0.18, MinPts = 4; b) EPS = 0.35, MinPts = 5; c) EPS
= 0.44, MinPts = 6. However, a more detail analysis has shown that in the second
case the number of clusters in various clustering is differ. This fact is unsatisfactory
in terms of the OCIT. Figure 2.28 shows the results of the gene expression profiles
clustering in the case of both the first and third combinations of algorithm parame-
ters use. The analysis of the obtained results allows us to conclude that in the first
case (Figure 2.28a) the clustering results are not satisfactory. Large quantity of the
objects (1459 of 2000) are identified as noise. The clustering results in the second
case (Figure 2.28b) are satisfactory. 1663 of objects from 2000 are allocated in one
cluster. 321 of objects are identified as noise. The second cluster contains 16 of
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Figure 2.25: Results of the simulation for Fisher’s irises dataset: a) sorted k-dist
graph for equal power subset A; b) sorted k-dist graph for equal power subset B;
c) chart of the balance criterion vs the EPS value for MinPts = 3; d) chart of the
balance criterion vs the MinPts for optimal EPS values
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Figure 2.26: Clustering results for Fisher’s irises dataset

Figure 2.27: Results of the simulation for gene expression profiles of patients which
were investigated on lung cancer disease: a) chart of the balance criterion vs the
EPS value for MinPts = 3; b) chart of the balance criterion vs the MinPts for
optimal EPS values
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Figure 2.28: Clustering results for gene expression profiles dataset

objects. This distribution is adequate one since the main group of gene expression
profiles which are allocated in the first cluster determines the major processes of the
biological organism functioning. Noise and a small number of objects of the second
cluster can be removed from the data at this stage of the experiment performing.

2.4.3 Results of SOTA Clustering Algorithm Operation

Self-organizing SOTA clustering algorithm in advance is focused to high-dimensional
data processing, so, the evaluation of effectiveness of the hybrid model of the objec-
tive clustering inductive technology based on SOTA algorithm was performed using
Fischer’s irises [116], gene expression profiles of moe430A [32] and dataset of gene
expression profiles of patients, which were investigated on lung cancer disease [30].
As was noted hereinbefore in section 2.3.2, the result of the SOTA clustering al-
gorithm operation is determined by two main parameters: the value of the weight
coefficient of the sister’s cell (scell), and the variation coefficient value (E). Figure
2.29a shows a chart of the balance clustering quality criterion versus the value of
the weight coefficient of the sister’s cell scell for the Fischer’s irises data. The value
of the variation coefficient E was taken as 0.1 in this case. The scell value increased
within the range from 0.001 to 0.2 with step 0.002. Two scell values were selected for
the following processing: 0.001 and 0.013. The simulation results have shown that
the use of larger scell values impairs the obtained results. Figure 2.29b shows the
charts of the balance clustering quality criterion versus the maximum value of the
variation coefficient E for selected scell values. Two combination of the algorithm



CHAPTER 2. OBJECTIVE CLUSTERING INDUCTIVE TECHNOLOGY 67

Figure 2.29: Results of the simulation for Fisher’s irises dataset: a) chart of the
balance criterion vs the scell value; b) chart of the balance criterion vs the variation
coefficient E for optimal scell values

parameters were determined as the simulation results: a) scell = 0.001, E = 0.86;
b) scell = 0.013, E = 0.88. Figure Figure 2.30 presents the results of the Fisher’s
irises data clustering when the first algorithm parameters combination was used.

As it can see from Figure 2.30, the algorithm divided the objects into four
clusters adequately. In this case, the setosa class objects are contained in the third
and fourth clusters, which is quite justified since the profiles of the features of these
objects are differed from each other. Objects of both versicolor and virginica classes
are contained in the first and in the second clusters. The profiles of these objects are
similar, so the first and second clusters have some intersection between each other.
In the case of the use of the second algorithm parameters combination the data were
divided into six clusters. This results is unsatisfactory for this type of data.

Figure 2.31 presents the simulation results for gene expression profiles from
dataset moe430a in the case of the use of both 147 of genes (Figure 2.31a) and
1000 of genes (Figure 2.31b). The simulation results have shown that changing the
variation coefficient value does not affect the obtained results. Thus, the variation
coefficient value in this case was equal zero. The scellvalues 0.001, 0.016, 0.071,
0.156 were selected as a result of the Figure 2.31a analysis. These values correspond
to the maxima of the balance clustering quality criterion. Figure 2.32 shows the
clustering results for each of the cases. As it can be seen, in each of the cases
the data were divided into two clusters. In addition, increasing the scell value is
not reasonable, since increasing this parameter value leads to decreasing difference
between average values of gene expression profiles in different clusters. This fact
indicates a lower algorithm resolution. Figure 2.33 shows the same results in the
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Figure 2.30: Results of Fisher’s irises dataset clustering when the first algorithm
parameters combination was used: scell = 0.001, E = 0.86

Figure 2.31: Results of the simulation for gene expression profiles from dataset
moe430a in the case of the use: a) 147 of genes; b) 1000 of genes
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Figure 2.32: Clustering Results of 147 of gene expression profiles from moe430a
dataset
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Figure 2.33: Clustering Results of 1000 of gene expression profiles from moe430a
dataset

case of 1000 of gene expression profiles use. The following scell values were selected
as the result of Figure 2.31b analysis: 0.001,0.021, 0.076, 0.146. As it can be seen,
the data in this case also were divided into two clusters and minimal value of the
scell parameter corresponds to better resolution of the algorithm.

Figure 2.34 presents the chart of the balance clustering quality criterion versus
the scell value for gene expression profiles of patients which were examined on lung
cancer disease. 2000 of gene expression profiles were used during the experiment
performing. As it can be seen from Figure 2.34, the scell value 0.001 corresponds
to maximum value of the balance clustering quality criterion. Considering the results
obtained for gene expression profiles of moe430a dataset, other of the scell values
did not examine. The clustering results are presented in Figure 2.35. The analysis
of the obtained results allows concluding that the use of a hybrid model of objective
clustering inductive technology based on SOTA algorithm allows us to divide the
gene expression profiles into two almost equal groups. It is obvious that genes in
each of the groups perform appropriate functions in the biological organism. Further
data processing can be performed on separated clusters, which simplifies the process
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Figure 2.34: Results of the simulation for gene expression profiles of patients which
were examined on lung cancer disease

Figure 2.35: Clustering Results of gene expression profiles of patients which were
investigated on lung cancer disease



CHAPTER 2. OBJECTIVE CLUSTERING INDUCTIVE TECHNOLOGY 72

of the gene expression profiles processing in accordance with aim of the current task.

2.5 An Evaluation of the OCIT Robustness to a Level
of Noise Component

In this section, we present the results of the research concerning evaluation of the
objective clustering inductive technology robustness to a level of noise component
[8]. The hybrid model of OCIT based on SOTA clustering algorithm was used as
the experimental during the simulation process. Gene expression profiles of 2000
patients who were examined on lung cancer [30] were used in this case. The length
of the studied vectors was equal to the number of the studied samples (96). The
simulation process involved the following steps:

1. Generation of random values vector. The length of this vector is equal to the
length of the studied gene expression profiles and its amplitude corresponds
to the minimum value of the studied data genes expression (“white noise”).

2. Setup of the vector of coefficients to change the amplitude of the noise compo-
nent. In the case of the studied gene expression profiles the values of coefficients
were changed within the range from 0.2 to 4 with step 0.2. These parameters
were determined empirically during the simulation process.

3. Formation of gene expression profiles with the noise by adding of the appro-
priate noise component to the studied gene expression profiles.

4. Division of the obtained data into two equal power subsets.

5. Gene expression profiles clustering with the use of objective clustering induc-
tive technology using SOTA clustering algorithm. The value of the sister cell
weigh coefficient (scell) was changed within the small range from 8 × 10−4

to 11 × 10−4 with the step 2 × 10−5. This range was determined empirically
during the previous simulation process. The value of the variation coefficient
was taken as zero.

6. Calculation of the complex balance criterion (general Harrington desirability
index) for each value of the sister cell weigh coefficient. Creation of the plots
of complex balance criterion versus the weigh coefficient value for both the
data without noise and the data with different levels of noise component.
Determination of the SOTA clustering algorithm optimal parameters, which
correspond to the maximum value of the complex balance criterion. Data
clustering with the use of SOTA algorithm with its optimal parameters.
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7. Calculation of the external clustering quality criteria, which allows us to com-
pare the clustering results for both the data without noise and the data with
noise component. The following criteria were used as the external clustering
quality criteria in this case:

• Jaccard index:
J = a

a+ b+ c
. (2.7)

• Kulczynski index:

K = a

2× (a+ b) + a

2× (a+ c) , (2.8)

where a is the number of objects distributed in the same clusters in different
clustering; b is the number of objects in the clusters of the first clustering,
which did not coincide with the appropriate objects in the clusters of the
second clustering; c is the number of objects in the clusters of the second
clustering, which did not coincide with the appropriate objects in the clusters
of the first clustering.

8. Analysis of the obtained results.

Figure 2.36 presents the charts of the complex balance criterion versus the
sister’s cell weigh coefficient (scell) of SOTA clustering algorithm, which was imple-
mented within the framework of the objective clustering inductive technology. The
noised gene expression profiles of the patients who were examined on lung cancer
disease were used in this case. The optimal value of the scell, which corresponds to
the maximum value of balance clustering quality criterion was determined during the
simulation process. The results of the simulation have shown that the increase of the
amplitude coefficient of the noise component from 0.2 to 3.2 does not significantly
influence to the character of the balance criterion change. Figure 2.37 shows the
charts of the number of objects in the clusters,the values of Jaccard and Kulczynski
indexes and the relative changes of these indexes in percentage versus the amplitude
coefficient of the noise component. The analysis of the obtained charts allows us to
conclude that the character of the objects distribution within the clusters is changed
slightly during the increase of the noise amplitude coefficient. It is naturally, since
the existence and the increase of the amplitude of the noise component in the studied
data changes the gene expression profiles. In this case, the movement of the object
between clusters is possible. The values of Jaccard and Kulczynski indexes decrease
monotonically in this cases, but the speed of these indexes changes chaotically in
the defined range. This character of these parameters change is observed to value of
the amplitude coefficient of noise 3.2. The charts of the appropriate parameters are
changed significantly in the case of larger value of the noise amplitude. The scell
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Figure 2.36: Charts of the complex balance criterion versus the sister’s cell weigh
coefficient (scell) for the gene expression profiles with the different levels of noise
component

Figure 2.37: Charts of: a) the quantity of gene expression profiles in different clus-
ters; b) Jaccard and Kulczynski indexes values; c) the relative changes of Jaccard
and Kulczynski indexes versus the amplitude coefficient of noise component
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optimal value of SOTA clustering algorithm, which corresponds to the maximum
value of the complex balance criterion is changed chaotically too. This fact indi-
cates the non-stability of the system. The number of the objects in the clusters and
the values of Jaccard and Kulczynski indexes in the case of large values of the noise
amplitude coefficient are changed very slowly.

As it can be seen in Figure 2.37c, the speed of these parameters changes in this
case tends to zero. This fact can be explained in the following way. In the case of
high level of the noise component, local particularities of the gene expression profiles
become smoother and clustering in this case is carried out by the estimation of the
coarse component of the appropriate vector. Therefore, the scell value in this case
is not determinative. The results of the simulation have shown that the clustering
results in the case of the high level of noise component are almost the same and
they do not depend on the scell value. The conducted research has shown also that
the objective clustering inductive technology is effective and efficient in the case
of the analysis of the complex data with the local particularities. The use of this
technology to group the gene expression profiles is reasonable in the case of low level
of the noise component.

2.6 Conclusions
In this chapter, the objective clustering inductive technology is presented as a definite
analogue of the inductive technology of complex systems analysis, which has allowed
us to formulate this study as a task of complex data objective clustering. Three
fundamental principles borrowed from different scientific fields are the basis of the
methodology of the complex systems inductive modeling: the principle of heuristic
self-organization; the principle of external addition; the principle of inconclusive of
solution. Implementation of these principles in the adapted version provides the
conditions to create the methodology of objective clustering inductive technology.

The affinity measures of high-dimensional vectors characterizing the investigated
data have been considered. Comparative analysis of the proximity metrics of the
gene expression profiles has been performed. It has been shown that the use of the
correlation metric for high dimensional data analysis allows us to obtain a higher
resolution in comparison with Euclidean and Manhattan metrics. A comparative
analysis of the internal clustering quality criteria has been performed using syn-
thetic separated equal power subsets. The investigated criteria considered both the
character of the objects distribution relative to the mass centers of the clusters were
these objects are located, and the character of the cluster centers distribution in
the feature space. The results of the simulation using synthetic datasets of gene
expression profiles have shown that Calinski-Harabasz criterion and WB index have
the greatest effectiveness in selecting the best clustering. A complex multiplicative
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internal clustering quality criterion has been proposed as the simulation result. This
criterion is calculated as multiplicative combination of Calinski-Harabasz criterion
and WB index and it allows us to obtain a higher resolution in comparison with
other internal clustering quality criteria. The external clustering quality criterion
was calculated within the framework of the objective clustering inductive technol-
ogy as normalized difference of the internal criteria calculated on equal power sub-
sets. A technique for calculating the complex balance clustering quality criterion
based on the Harrington desirability function has been developed. This technique
is presented as a stepwise algorithm for determining the vector of the generalized
Harrington desirability index for the obtained clusterings. Maximum value of this
criterion corresponded the best clustering in terms of the used criteria.

The architecture of the objective clustering inductive technology has been pro-
posed. This model is presented as a step-by-step detailed scheme of the practical
implementation of the procedure for objective selecting the optimal clustering based
on inductive methods of complex systems analysis.

A comparative analysis of the obtained hybrid models has been done using two-
dimensional synthetic data from School of Computing of Eastern Finland University,
Fischer’s irises, and gene expression profiles. The optimal parameters of the corre-
sponding clustering algorithm have been determined during the simulation process.
The applying of the proposed technique has allowed us to obtain the optimal group-
ing of the investigated objects. It has been shown that in the case of the gene
expression profiles analysis, the use of DBSCAN clustering algorithm within the
framework of the OCIT allows us to distinguish the gene expression profiles which
have the lowest density distribution in feature space. These genes have been identi-
fied as noise and they can be removed from the investigated data as non-informative
ones. SOTA clustering algorithm allows us to divide the selected gene expression
profiles into two approximately equal subsets.

An evaluation of the robustness of the objective clustering inductive technology
to the level of the noise component has been done with the use of SOTA clustering
algorithm. The gene expression profiles with various level of noise component of
patients which were investigated on lung cancer disease were used as the experimen-
tal data. Jaccard index and Kulchinsky coefficient have been used as the external
independent quality criteria for evaluate the clustering results during grouping gene
expression profiles within the framework of the OCIT. The analysis of the obtained
results has shown high robustness of the proposed OCIT to the noised data. The
proposed technique allows us to determine the optimal clustering algorithm parame-
ters. The further applying of this algorithm with optimal parameters allows dividing
the investigated objects into clusters adequately.



Chapter 3

Biclustering Techniques

3.1 Introduction
Bicluster analysis is a technique focused to allocate from high-dimensional data
array mutual correlated rows and columns [81]. For example, in the case of gene
expression profiles analysis, the rows are the studied genes and the columns are the
conditions of the experiment performing. Selection of groups of mutually correlated
genes and conditions from microarray allows us to reconstruct the gene network,
which will be able to reflect objectively the influence of the appropriate genes to
functional possibilities of the studied biological object.

Bicluster analysis of gene expression profiles has been considered in [108, 114].
The authors analysed various biclustering algorithms and specified their advantages
and shortcomings. The paper [49] presents a comparative analysis of various bi-
clustering algorithms effectiveness. The gene expression profiles were used as the
experimental data in this case. In [89] the authors presented the results of the
research concerning spectral biclustering algorithm use to allocate biclusters from
gene expression profiles. In [93] the authors considered questions concerning bi-
cluster analysis implementation for data which contain missing values. However,
it should be noted, that in spite of the achieved results, technique of biclustering
algorithms optimal parameters determination based on qualitative criteria is absent
nowadays.

This chapter presents the results of the research concerning comparison analysis
of biclustering algorithms effectiveness based on the quantitative biclustering quality
criteria with the use of both the synthetic data and gene expression profiles [17].

77
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3.2 Basic Concepts of Bicluster Analysis and Bicluster-
ing Quality Criteria

As was noted hereinbefore, bicluster is a set of mutually correlated rows and columns.
Let the initial data is presented as a matrix:

A = {aij}, i = 1, n, j = 1,m, (3.1)

where n is the number of rows; m is the number of columns; aij is the value in j-th
column for i-th row. By analogy with (3.1), the matrix of data in biclusters takes
the form:

B = {aij}, i = 1, k, j = 1, s, (3.2)

where k and s are the numbers of rows and columns in biclusters respectively.
In [103] the authors analysed the types of various biclusters considering their

structure. Assuming that δ is a some constant for bicluster B, then, depending on
the character of the data distribution in the initial matrix, the following types of
the biclusters can be allocated:

1. Bicluster with constant values:

aij = δ

2. Bicluster with constant values of rows or columns:

aij = δ + ai or aij = δ × ai

aij = δ + aj or aij = δ × aj

3. Bicluster with coherent values:

aij = δ + ai + aj or aij = δ × ai × aj

4. Bicluster with coherent evolution:

aih ≤ air ≤ aid or ahj ≤ atj ≤ adj

However, it should be noted that in most cases real data contains intersected biclus-
ters, since the character of rows data distribution for different columns can be very
complex and various biclusters can include the same rows or columns.

The following biclustering quality criteria were used during the simulation pro-
cess:
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• Jaccard index was used as the external biclustering quality criterion in the case
of perfect biclustering existence. For two biclusters BC1 and BC2 formula to
calculate Jaccard index is the following:

JI(BC1, BC2) = |BC1 ∩BC2|
|BC1 ∪BC2|

In the case of more biclusters, any biclustering algorithm allows us to obtain
a result matrix which contains information concerning appropriate biclusters.
In this case, the Jaccard index is calculated by the formula:

JI(BC_Res1, BC_Res2) =

= 1
n1

n1∑
i=1

n2∑
j=1

|BCi(BC_Resi) ∩BCj(BC_Resj)|
|BCi(BC_Resi) ∪BCj(BC_Resj)|

(3.3)

where n1 and n2 are the number of biclusters in various biclustering;
BCi(BC_Resi) and BCj(BC_Resj) are the biclustering results in i-th and
j-th biclusterings respectively.
If there are intersection between biclusters, then, the formula (3.3) is trans-
formed in the following way:

JIcor(BC_Res1, BC_Res2) =

= JI(BC_Res1, BC_Res2)
max(JI(BC_Res1, BC_Res1), JI(BC_Res2, BC_Res2))

(3.4)

It should be noted that the formula (3.4) is transformed into the formula (3.3)
in the case of absence of any intersection between biclusters (the denominator
in the formula (3.4) is equal one).

• The internal biclustering quality criterion. This criterion is calculated as fol-
lows:

1. Calculation of average of Euclidean distance between all rows in the ap-
propriate bicluster:

QC1 = 2
nr × (nr − 1)

nr−1∑
i=1

nc∑
j=i+1

( 1
nc

nc∑
k=1

(x[i, k]− x[j, k])2)

where nr and nc are the numbers of rows and columns in bicluster re-
spectively.

2. Calculation of average of Euclidean distance QC2 between all columns in
the appropriate bicluster.
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Figure 3.1: Synthetic biclusters

3. Calculation of average value of QC1 and QC2 criteria.
4. Calculation of average value of the obtained criterion for all biclusters.

It is obvious, that minimal value of the internal biclustering quality criterion
corresponds to the best biclustering.

3.3 Bicluster Analysis With the Use of Synthetic Bi-
clusters

3.3.1 Experimental Synthetic Data

Figure 3.1 shows the synthetic data which were used during the simulation process.
Data matrix of random values (50 × 100) contains five biclusters. In the first case
(Figure 3.1a), the same biclusters (10×20) have no intersections, in the second case
(Figure 3.1b), the lager biclusters (13 × 23) have some intersection between each
other, in the third and in the fourth cases (Figure 3.1c,d), the biclusters differ and
they have various level of mutual intersection.

3.3.2 Bicluster Analysis with the use of Non-intersectional Syn-
thetic Biclusters

Evaluaton of effectiveness of the hereinbefore presented biclustering quality criteria
was performed with the use of biclust package [82] of R software [75]. Biclustering
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Figure 3.2: Results of bimax biclustering algorithm operation: a) binarized data; b)
perfect biclustering

algorithms bimax [115], CC [42], spectral [89] and ensemble [81] were used during
the simulation process. Firstly, the perfect biclustering was obtained using bimax
algorithm. The implementation of this algorithm assumes binarization of the studied
data as follows:

xij =
{

0, if xij ≤ median(X)
1, if xij > median(X)

Binarization result is shown in Figure 3.2a. To obtain perfect biclustering, a
minimum number of rows and columns in biclusters (10 and 20) were determined on
a binarized data. Then, a set of biclusters which corresponds to perfect biclustering
was obtained (Figure 3.2b). The perfect biclastering was used to calculate Jaccard
index. Higher value of Jaccard index corresponds to better biclustering.

Figure 3.3 shows the charts of both Jaccard index and internal biclustering
quality criterion versus the minimum number of rows in biclusters in the case of the
use of synthetic data with non-intersectional biclusters (Figure 3.1a). Minimum
number of columns was twice bigger than minimum number of rows. The analysis
of the charts allows us to conclude that value of Jaccard index achieves maximum (JI
= 1) in the case of 9 or 10 of rows quantity in biclusters. It means that the obtained
and the perfect biclustering are the same. The internal biclustering quality criterion
has minimal values in the case. This fact means that both criteria in this case
allow us to determine the optimal parameters of the Bimax biclustering algorithm.
The main disadvantage of this algorithm is that it implementation requires the
binarization of the data. In this case, a lot of useful information is lost.

Figure 3.4 shows the results of CC biclustering algorithm operation. Delta
(δ) is the main parameter, which determines the result of the algorithm operation.
Value of the delta parameter was changed within the range from 0.2 to 0.5 by
step 0.005. Analysis of the obtained results shows low quality of this algorithm
operation, since Jaccard index has maximum value 0.2 if delta parameter value is
0.3. Low value of Jaccard index and high level of these values fluctuation indicate
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Figure 3.3: Charts of Jaccard index (a) and internal biclustering quality criterion (b)
versus the minimum number of rows in biclusters in the case of bimax biclustering
algorithm applying

Figure 3.4: Charts of biclusters quantity (a), Jaccard index (b) and internal biclus-
tering quality criterion (c) versus the delta parameter in the case of CC biclustering
algorithm use
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Table 3.1: Results of CC biclustering algorithm operation (Distributions of rows
and columns in the biclusters in the case of the use of 0.3 delta parameter value)

Bicluster Perfect 1 2 3 4 5
Rows 10 13 11 12 7 6

Columns 20 22 27 10 18 14

Figure 3.5: Charts of biclusters quantity (a), Jaccard index (b) and internal bi-
clustering quality criterion (c) versus the delta parameter in the case of spectral
biclustering algorithm use

a big difference between perfect and obtained biclustering. However, it should be
noted, that minimum values of the internal biclustering quality criterion correspond
to maximum values of Jaccard index. In this case these criteria allow us to select
the best biclustering from admissible ones. Distributions of rows and columns in the
biclusters in the case of the use of 0.3 delta parameter value are presented in Table
3.1.

The simulation results in the case of spectral biclustering algorithm application
are shown in Figure 3.5. As it can be seen, in this case the results of biclustering are
not perfect. However the values of Jaccard index and the internal biclustering quality
criterion change concordantly to each other too. The analysis of the obtained charts
has shown also that the optimal biclustering corresponding to both the maximal
values of the Jaccard index or the minimal values of the internal biclustering quality
criterion are achieved in the cases of the number of rows in the biclusters 3, 7 and
9. However, more detailed analysis has shown that in the case of the use of the
minimal number of rows of 3, the Jaccard index value is slightly smaller and the
internal criterion value slightly larger than the corresponding values obtained in the
case of the use of the minimal number of rows 7 and 9. The optimal clustering in
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Table 3.2: Results of spectral biclustering algorithm operation (Distributions of rows
and columns in the biclusters in the case of minimal number of rows 7(9))

Bicluster Perfect 1 2 3 4 5
Rows 10 10 11 10 10 -

Columns 20 21 27 20 21 -

Figure 3.6: Charts of biclusters quantity (a), Jaccard index (b) and internal biclus-
tering quality criterion (c) versus the thresholding coefficient value in the case of
ensemble biclustering algorithm use

this case corresponds to the four biclusters. The fifth bicluster was not identified.
This fact explains the difference of the appropriate criteria values. The results of
optimal biclustering obtained using the spectral biclustering algorithm are shown in
Table 3.2.

Figure 3.6 and Figure 3.7 present the results of the simulation concerning ap-
plication of ensemble biclustering algorithm. The result of the algorithm operation
depends on two parameters: thresholding coefficient values and ratio of rows and
columns quantity in biclusters. The charts of biclusters quantity, Jaccard index
and internal biclustering quality criterion versus the thresholding coefficient value
in the case of 0.5 ratio of rows and columns quantity are shown in Figure 3.6. The
thresholding coefficient value was changed in this case within the range from 0.01 to
0.4 with step 0.01. Figure 3.7 shows the charts of Jaccard index and the internal
biclustering quality criterion versus the ratio of rows and columns quantity in the
case of 0.03 value of the thresholding coefficient (this value corresponds to both the
maximal value of Jaccard index and minimal value of the internal criterion). At the
second step, the ratio of rows and columns quantity was changed within the range
from 0.1 to 0.8 with step 0.1.
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Figure 3.7: Charts of Jaccard index (a) and internal biclustering quality criterion
(b) versus the ratio of rows and columns quantity in biclusters in the case of the use
of ensemble biclustering algorithm

The analysis of the obtained results shows high stability and effectiveness of
ensemble biclustering algorithm operation. The character of the data distribution
in the biclusters is not changed during variation of the thresholding coefficient from
0.01 to 0.32. Six biclusters were obtained in this case. Five biclusters were the
same as in perfect biclustering were. The sixth bicluster contained 6 of rows and
six of columns. The value of Jaccard index was 0.83, what indicates to high level
of proximity between obtained and perfect biclustering. The value of the internal
biclustering quality criterion in this case also achieved its minimal one. The analysis
of the charts in Figure 3.7 allows us also to conclude that the internal biclustering
quality criterion is more sensitive to variation of the ratio coefficient in comparison
with Jaccard index. Both criteria have extrema, which correspond to 0.4 value of
ratio of the rows and columns quantity in the biclusters. However, the extremum
value of the internal biclustering quality criterion is more accurate to compare with
the use of Jaccard index.

The results of the simulation concerning bicluster analysis with the use of syn-
thetic data contained the same non-intersectional biclusters have shown that en-
semble biclustering algorithm is more effective in comparison with other biclustering
algorithms. Application of this algorithm allows us to obtain adequate biclustering
relative to perfect one. Moreover, the simulation results have also shown high effec-
tiveness of the proposed internal biclustering quality criterion, since the value of this
criterion has a local minimum which corresponds to the local maximum of Jaccard
index. This fact indicates a high level of similarity between the obtained and perfect
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biclustering, but the internal criterion does not require the perfect biclustering.

3.3.3 Technique of Bicluster Analysis Based on Ensemble Biclus-
tering Algorithm

The obtained results allow us to propose the technique of bicluster analysis based
on ensemble biclustering algorithm. Implementation of this technique allows deter-
mining the optimal parameters of ensemble algorithm which correspond to extrema
values of the internal biclustering quality criterion. Structure block-chart of al-
gorithm to implement the proposed technique is shown in Figure 3.8. Practical
implementation of the algorithm assumes the following steps:

1. Preparation of data.

(a) Data preprocessing. Data formation as a matrix A = {xi,j}, where i =
1, n and j = 1,m are the the numbers of rows and columns respectively.

2. Determination of the thresholding coefficient optimal value.

(a) Fixation of simthr parameter value, which determines the ratio of rows
and columns quantity in biclusters. Setup of both the range and step of
the thresholding coefficient value variation.

(b) Data biclustering within the range of the thresholding coefficient value
change. Biclusters fixation and calculation of the internal biclustering
quality criterion at each step of this procedure implementation.

(c) Analysis of the obtained results, fixation of the thresholding coefficient
value, which corresponds to the minimal value of the internal biclustering
quality criterion.

3. Determination of optimal value of ratio of rows and columns quantity in bi-
clusters.

(a) Setup of both the range and step of ratio of rows and columns quantity
variation.

(b) Data biclustering within the range of this parameter change. Fixation of
the biclusters, calculation of the internal biclustering quality criterion at
each step of this procedure implementation.

(c) Analysis of the obtained results, fixation of the ratio of rows and columns
quantity in biclusters, which corresponds to the minimal value of the
internal biclustering quality criterion.

4. Fixation of the optimal biclustering.
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Figure 3.8: Structural block-charts of the algorithm to implement technology of
bicluster analysis based on ensemble biclustering algorithm
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Figure 3.9: Results of the simulation concerning bicluster analysis of the synthetic
dataset 2

Table 3.3: Disrtibution of rows and columns in the biclusters obtained from synthetic
data 2

Biclusters 1 2 3 4 5 6 7 8 9
Rows 13 12 12 13 4 3 5 13 13

Columns 22 23 23 23 8 6 21 23 27

(a) Data biclustering with the use of ensemble biclustering algorithm optimal
parameters. Biclusters fixation.

3.3.4 Bicluster Analysis with the use of Intersectional Synthetic
Biclusters

Figure 3.9 shows the results of the simulation concerning bicluster analysis of the
synthetic data presented in Figure 3.1b. The biclustering process was performed
within the framework of the technique presented in Figure 3.8. It is obvious, that
in this case the number of biclusters can be more than five due to their mutual
intersection. The following optimal algorithm parameters were determined as the
result of Figure 3.9 analysis: thr = 0.06, simtfr = 0.7. Nine biclusters were selected
in this case. Distribution of rows and columns in the biclusters are presented in Table
3.3. Analysis of the simulation results allows us to conclude that the obtained
biclustering is adequate, since the biclusters 1,2,3,4,8 coincide almost completely
with biclusters in the synthetic data 2. However, the ninth bicluster contained 13
rows and 17 columns was allocated too. This bicluster can also be interesting for
the following investigation. Other biclusters can be removed due to lower number
of rows and columns.

Results of the simulation concerning bicluster analysis of the synthetic data 3
and 4 (Figure 3.1c,d) are presented in Figure 3.10 and Figure 3.11. The investi-
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Figure 3.10: Results of the simulation concerning bicluster analysis of the synthetic
dataset 3

Figure 3.11: Results of the simulation concerning bicluster analysis of the synthetic
dataset 4
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Table 3.4: Disrtibution of rows and columns in the biclusters obtained from synthetic
data 3

Biclusters 1 2 3 4 5 6 7 8
Rows 15 21 14 11 5 13 8 13

Columns 31 33 16 23 25 20 14 16
Biclusters 9 10 11 12 13 14 15 16
Rows 2 6 3 2 2 2 3 4

Columns 28 13 11 15 26 22 31 13

Table 3.5: Disrtibution of rows and columns in the biclusters obtained from synthetic
data 4

Biclusters 1 2 3 4 5 6 7 8 9 10 11
Rows 10 21 8 6 6 16 2 2 3 3 2

Columns 23 26 19 15 25 20 12 17 18 13 10

gated datasets contain biclusters of different size with various level of their mutual
intersection. Analysis of the obtained results allows concluding that the increasing
level of mutual intersection complicates the process of biclusters allocation. This
fact can be explained by greater amounts of variants of rows and columns grouping
into biclusters. In this case the character of the data grouping into biclusters is
changed more intensively during change of the algorithm parameters.

Table 3.4 and Table 3.5 present the results of rows and columns distribution
within the obtained biclusters. Parameters of ensemble biclustering algorithm
in these cases were the following: synthetic_3 data: thr = 0.1, simthr = 0.6;
synthetic_4 data: thr = 0.1, simthr = 0.7. As it can be seen from the Table
3.4 and Table 3.5, 16 biclusters were selected in the case of synthetic_3 data use,
but only nine biclusters (1-8,10) are informative in terms of amount of the data in
biclusters. Eleven biclusters were selected in the case of synthetic_4 data use, but
only the first six are informative ones.

3.4 Bicluster Analysis With the Use of Gene Expression
Profiles

Figure 3.12 shows the results of the simulation concerning bicluster analysis of
patients’ gene expression profiles, which were investigated on lung cancer disease
[30]. The gene expression profile in this case is a vector of numeric values, each of
them determines the expression of gene for appropriate sample. The thresholding
coefficient value was changed within the range from 0.05 to 0.5 by step 0.01. The
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Figure 3.12: Results of the simulation concerning bicluster analysis of gene expres-
sion profiles

Figure 3.13: Gene expression profiles of nine of the biggest biclusters

value of thresholding coefficient 0.27 was determined as the simulation result (Figure
3.12b). This value corresponds to the global minimum of the internal biclustering
quality criterion. The increase of the thresholding coefficient value is not reasonable
since it promotes to sharp increase of the number of little biclusters. Figure 3.12c
shows the chart of the internal biclustering quality criterion versus the value of
ratio coefficient, which determines the ratio of rows and columns in biclusters. The
thresholding coefficient value in this case was 0.27. The simthr value was changed
within the range from 0.01 to 0.2 by step 0.01 during the simulation process. The
simthr value 0.13 was determined as optimal one because this value corresponds to
the minimal value of the internal biclustering quality criterion. 27 of biclusters were
allocated as the simulation results. Figure 3.13 shows the gene expression profiles
of nine of the biggest biclusters.
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Figure 3.14: Structural block chart of the cluster-bicluster analysis hybrid model

As it can be seen, the gene expression profiles, which are within different biclus-
ters are differed between each other. At the same time, the gene expression profiles
in single biclusters are similar to each other. This fact indicates the correctness of
the proposed biclustering technique.

3.5 Hybrid Model of Cluster-Bicluster Analysis of Gene
Expression Profiles

The conducted research allow us to propose a hybrid model of gene expression
profiles grouping based on step-by-step application of clustering and biclustering
techniques. Structure block chart of this model is presented in Figure 3.14. Practical
implementation of this model involves the following stages:

1. Formation of data and their preprocessing.

(a) Formation of matrix of the gene expression profiles, data filtration, and
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non-informative genes reducing.

2. Gene expression profiles clustering.

(a) Division of the initial gene expression profiles data set into two equal
power subsets, which contain the same quantity of pairwise similar gene
expression profiles.

(b) Determination of the optimal parameters for DBSCAN and SOTA clus-
tering algorithms using the technique presented in the section 2.3.

(c) Data clustering with the use of DBSCAN algorithm. Selection of a noise
component. Formation of a new matrix of gene expression profiles for the
following processing.

(d) Clustering the obtained gene expression profiles with the use of SOTA
clustering algorithm. Formation of two subsets of gene expression profiles
for the following bicluster analysis.

3. Gene expression profiles biclustering on the obtained clusters.

(a) Choice of the biclustering algorithm, setup of its parameters.
(b) Biclustering process. Formation of the biclusters, which contain mutually

correlated genes and conditions of experiment performing.

4. Reconstruction of the gene regulatory networks based on the data of the ob-
tained biclusters.

It should be noted that practical implementation of hereinbefore described step-
by-step technology allows us to save more useful information at the stage of gene ex-
pression profiles preprocessing. Initial data set of the gene expression profiles, which
can be obtained by DNA microarray experiments or by RNA sequencing methods,
contains tens of thousands of genes. Bicluster analysis with the use of the initial
data allows us to receive the biclusters of mutually correlated genes and conditions
of experiment performing. However, the parallel gene expression profiles processing
with the use of step-by-step data clustering technology promote to higher level of
concentration of mutually correlated genes and conditions of the experiment per-
forming. This fact influences the following process of the gene regulatory networks
reconstruction and simulation of their operation.

3.6 Conclusions
This chapter presents the comparison analysis of biclustering algorithms with the
use of synthetic data contained five biclusters. In the first and in the second cases
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the generated biclusters were the same, but in the first case they have no intersec-
tion and in the second case biclusters have the same intersection between each other.
The third and the fourth data contained different and mutually intersected biclus-
ters. Jaccard index and the internal biclustering quality criterion have been used to
estimate the biclustering algorithm effectiveness. Bimax, CC, spectral and ensemble
biclustering algorithms have been used during the simulation process. Results of
the simulation with the use of non-intersectional similar biclusters have shown that
Jaccard index and the internal biclustering quality criterion have extrema, which cor-
respond to the same and the best character of the studied data grouping. This fact
has allowed us to use the internal biclustering quality criterion as the main criterion
to estimate the effectiveness of the studied data grouping into biclusters. Simula-
tion results have shown also that ensemble biclustering algorithm is more effective
in comparison with other used biclustering algorithms. Technique of biclustering
based on ensemble algorithm and step-by-step procedure of its implementation has
been proposed as the simulation results. Application of this technique allows us to
determine the optimal parameters of the biclustering algorithm operation.

Application of the proposed technique with the use of the test synthetic data,
which contain intersection biclusters, has shown high efficiency of its operation. The
studied data have been divided into biclusters adequately, but the increase of the
level of mutual intersection complicates the allocation of biclusters due to greater
number of variants of rows and columns grouping into biclusters.

The hybrid model of cluster-bicluster analysis based on the complex use of DB-
SCAN and SOTA clustering algorithms and bicluster analysis method has been pro-
posed as the simulation result. Practical implementation of this model at the early
stage of gene regulatory network reconstruction allow us to increase the quality of
the reconstructed gene network by more careful grouping of the mutually correlated
genes and conditions of the experiment performing.



Chapter 4

Gene Expression Profiles
Pre-Processing

4.1 Introduction
Gene regulatory network is a set of genes which interact between each other to con-
trol the specific cells functions [146]. Qualitatively reconstructed gene regulatory
network promotes to better understanding of the genes interaction mechanism in
order to create new methods of both the early diagnostics and treatment of complex
genetic diseases. The gene expression profiles which are obtained by DNA microar-
ray experiments or by RNA molecules sequencing method, are the basis for the gene
regulatory networks reconstruction [126, 68]. High dimension of feature space is
one of the distinctive peculiarities of the studied data. The reconstruction of gene
networks based on the whole dataset of gene expression profiles is very complicated
task due to the following aspects: it requests large computer resources; complex-
ity of the reconstructed gene regulatory networks complicates the interpretation of
obtained results. Therefore, it is necessary at early stage of gene regulatory net-
work reconstruction to process the gene expression profiles with the use of current
computational and information techniques of complex data processing. This process
includes data formation as a matrix of genes expression, non-informative genes re-
ducing, data clustering and biclustering in order to select mutually correlated genes
and samples.

Figure 4.1 shows the structural block-chart of the information technology of
gene expression profiles processing for purpose of both gene regulatory network
reconstruction and validation of the reconstructed models.

As it can be seen from Figure 4.1, implementation of the technology assumes
five stages:
Stage 1 Formation of gene expression profiles array.

95
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Figure 4.1: Information technology of gene expression profiles processing
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In the case of the use of RNA molecules sequencing method, we have the matrix
of gene expressions directly. However, in this case, it is necessary to select in-
formative genes in terms of appropriate criteria. In the case of DNA microchip
experiment performing, we have as the initial data the matrix of light inten-
sities. Convertation of this matrix into matrix of gene expressions assumes
the following steps: background correction, normalization, PM correction and
summarization. Determination of optimal combination of the methods to per-
form this process is one of the current tasks. Further, we will present our
versus of this task solve.

Stage 2 Gene expression profiles reducing.
The aim of this stage is division of the studied gene expression profiles into
informative and non-informative in terms of complex use of statistical criteria
and Shannon entropy. It is assumed that if variance or average of absolute val-
ues of gene expression profiles is less and Shannon entropy is greater than ap-
propriate boundary value, then, these profiles are identified as non-informative
and they can be removed without significant loss of useful information.

Stage 3 Step-by-step gene expression profiles clustering within the framework of
the objective clustering inductive technology.
As was described in the chapter 2, the use of DBSCAN clustering algorithm
allows us to allocate the genes, which are identified as noise. These genes are
removed from the studied data. At the second step of the clustering process
implementation, the gene expression profiles are divided into two clusters with
the use of SOTA clustering algorithm. These subsets are used for the following
bicluster analysis.

Stage 4 Bicluster analysis of the obtained subsets of gene expression profiles.
Implementation of this stage allows us to allocate subsets of mutually corre-
lated vectors of both gene expression profiles and conditions of the experiment
performing. These subsets are used for gene regulatory networks reconstruc-
tion at the next step of this procedure implementation.

Stage 5 GRN reconstruction and validation of the reconstructed models.
The optimal topology of the obtained gene networks is determined on the
basis of the maximum value of general Harrington desirability index, which
contains as the components the network topological parameters. Validation
of the reconstructed models is performed based on the comparison analysis of
the interconnection between the appropriate genes in the basic network and
in the networks reconstructed based on the obtained biclusters. ROC-analysis
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Figure 4.2: A block chart of the procedure of DNA microchip light intensities matrix
formation

technique is used to calculate the relative quality criterion, which indicates a
quality of the reconstructed gene networks.

4.2 Techniques of Genes Expression Array Formation
As was described hereinbefore, two technique are used nowadays to form array of
genes expression: DNA microchip technique and RNAmolecules sequencing method.
Each of the techniques has its advantages and shortcomings. DNA microchips tech-
nique is significantly more cheaper, but exactness of genes expression estimation
in this case is significantly lower in comparisson with RNA molecules sequencing
method. However, two techniques are used concurrently nowadays. In this reason,
below, we describe both techniques.

4.2.1 Technique of DNA-microchips Data Processing

The data, which are obtained during the DNA microchip experiments implementa-
tion, are presented as a matrix of light intensities. A block chart of the procedure of
DNA microchip light intensities matrix formation during the experiment performing
is presented in Figure 4.2. Joining of complementary single-chain nucleotides with
fluorescent labels to a single molecule is performed during the hybridization process.
It is obvious, that the level of light intensities in appropriate point of the microchip
is proportional to quantity of the hybridized RNA molecules, which correspond to
appropriate type of the protein. The following stages of the DNA microchip process-
ing are filtering in order to remove unhybridized samples and scanning for purpose
of the matrix of light intensities formation. Figure 4.3 presents the step-by-step
procedure of transforming the light intensities values to the expression of the ap-
propriate genes. As it can be seen from Figure 4.3, each of the steps assumes the
use of various methods and choice of the combination of these methods influences
directly to the quality of the obtained genes expression values. Thus, the main prob-



CHAPTER 4. GENE EXPRESSION PROFILES PRE-PROCESSING 99

Figure 4.3: A chart of step-by-step procedure of transforming the light intensities
matrix to the matrix of genes expression

lem consists in determination of the optimal combination of the methods to process
the DNA microchip data in order to increase the informativity of the obtained gene
expression data.

The issues concerning DNA microarray data processing are presented in [90,
79, 23]. The authors considered in detail the stages of DNA microarrays creation
and the peculiarities of their processing. However, these papers do not contain
the investigations concerning determination of optimal combination of the methods
based on quantitative criteria.

Classification and detail description of the background correction methods are
presented in [34, 2, 76, 41]. Ideal Mismatch method was proposed by Affymetrix
company [2]. This method involves the complex use of both the Perfect Match (PM)
nucleotide samples which fully correspond to the investigated genes and the Miss
Match (MM) samples, in which the mean nucleotide is changed to complementary
one. Robust Multichip Average (RMA) background correction method involves the
use only PM samples [76]. This fact decreases the costs to the microchip preparing
due to absence of the MM samples. The values of light intensities in this case are
presented as the sum of the useful signal, which is distributed exponentially, and
the normally distributed noise component. Distribution Free Convolution Model
(DFCM) background correction method [41] also assumes that values of light in-
tensities are presented as the combination of both the useful signal and the noise
component. But in this case do not any assumes about the character of the compo-
nents distribution. This method involves the use of both the PM and MM samples.
The main idea and the detail description of the Affymetrix Micro Array Suite 5.0
(MAS 5.0) technique of background correction are presented in [34, 2].

The techniques of DNA microchip data normalization are presented in [34, 59,
113, 117, 6, 40]. The necessity of this stage is determined by low correlation of the
data which were determined when different conditions of the experiment performing.
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The aim of the normalization process is the reduction of the microchip empirical data
to the same distribution. This step allows minimizing the technological differences
between the parameters of different genes and, as a result, to carry out the com-
parison of the expression values of the corresponding genes obtained under different
conditions of the experiment performing. The results of the research concerning
comparison analysis of various methods of PM corrections and summarization of
the DNA microchip data are presented in [34, 117, 29, 91]. PM correction stage is
performed in order to reduce the nonspecific hybridization effect by correction of
PM samples light intensities considering the light intensities of the appropriate MM
samples. The summarization process assumes the calculation of gene expressions
values from light intensities of the samples for investigated genes.

Below, we present the technique of DNA microarray data processing based on
the complex use of Bioconductor tools and Shannon entropy for purpose of gene
expression array formation [12].

Materials and methods

The Shannon entropy criterion, which is calculated based on James-Stein shrink-
age estimator [67], was used as the main criterion to estimate the gene expression
informativity during the simulation process. This technique is described in detail
in the chapter 1 (formulas 1.4-1.6). Less value of Shannon entropy criterion (1.6)
corresponds to the higher level of the investigated vector informativity. A structural
block chart of the algorithm which was used to determine the optimal combina-
tion of the methods of DNA microarray data processing is shown in Figure 4.4.
Implementation of this algorithm involves the following steps:

1. Loading the DNA microarray data.

2. Setup of the stage of data processing (background correction, normalization,
PM correction, summarization). Fixation of the methods, which do not corre-
spond to this stage randomly.

3. Choice of the first method for current stage.

4. DNA microarray data processing using selected methods.

5. Calculation of the Shannon entropy for each of the investigated microchips.
Calculation of average value of the Shannon entropy for all DNA microarrays.

6. If the number of the method is less than the maximum quantity of the meth-
ods at this stage, then choice the next method and go to the step 4 of this
procedure. Otherwise fixation of the method which correspond to the minimal
value of the Shannon entropy.
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Figure 4.4: A chart of the step-by-step procedure to transform the light intensities
matrix to the matrix of genes expression
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Figure 4.5: Scanning images of nine of the investigated DNA microchips

7. If the number of the stage is less than maximal quantity of the stages, then
go to the next stage and go to the step 3 of this procedure. Otherwise, DNA
microarray data processing with the use of determined combination of the
methods.

Experiments

Simulation process of DNA microchip data pre-processing was performed based on
R software [75] using functions of Bioconductor package [73, 59]. The lung cancer
patients’ gene expression profiles E-GEOD-68571 [30] from database ArrayExpress
were used as the experimental ones during the simulation process. These data
include 96 of DNA microchips of patients which were investigated on lung cancer.
Each of the DNA microchips includes 7129 of genes. 10 patients were identified as
healthy and 86 sick patients were divided by the state of their health into three
groups. Figure 4.5 shows the images of nine of the investigated DNA microchips
which were obtained by scanning of the appropriate objects. The following step of
the data processing is the transform of the light intensity matrixes into array of
genes expressions using the hereinbefore presented methods.
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Figure 4.6: Estimation of light intensities distribution in the selected DNA mi-
crochips

Results and discussions

The character of light intensities values distribution in the selected DNA microarrays
is presented in Figure 4.6. Figure 4.7 shows the MA charts for all pairs of five
selected DNA microchips. The MA chart shows the difference of logarithms of the
PM (Perfect Math) samples values (M) versus the average of logarithms of the PM
samples values (A). The parameters M and A for i-th gene and samples k and n
are calculated in the following way:

Mk = log2(xki

xni
), A = 1

2 log2(xki · xni) (4.1)

The chart is created for PM values for all possible pairs of the investigated samples.
In the case of highest quality of the data processing, the data should be distributed
in a rather narrow range, and the points at MA diagram should be located along
the axis of M = 0 with the lowest averages.

The analysis of the received diagrams confirms the assumption concerning the
necessity of the initial data preprocessing. The character of the data distribution
for various microchips is differed significantly (Figure 4.6a). The values at kernel
density plots which are shown in Figure 4.6b are distributed along axis of the light
intensities logarithm randomly too. Finally, the corresponding points on the MA
diagrams (Figure 4.7) have different distributions too. These facts do not allow us
to compare the investigated gene expression profiles objectively.

Figure 4.8 and Figure 4.9 present the results of the research concerning back-
ground correction of the DNA microarrays by methods: rma, mas and DFCM.
Ideal Mismatch method has not used due to lower quality of its operation [26]. The
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Figure 4.7: MA charts of light intensities distribution for PM samples
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Figure 4.8: Boxplot charts of unprocessed and processed data when the various
background correction methods are used
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Figure 4.9: Kernel density plots of unprocessed and processed data when the various
background correction methods are used
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Figure 4.10: Charts of Shannon entropy distribution versus the methods of the
data processing at the stages: a) background correction; b) normalization; c) PM
correction; d) summarization

analysis of the obtained charts allows us to conclude that the background correction
increases the image quality. The processed data are distributed more uniformly in
comparison with unprocessed data distribution. However, it should be noted that
visual analysis of the diagrams does not allow comparing the quality of the used
methods objectively in order to choose the best one. Figure 4.10 presents the re-
sults of the research concerning determination of the optimal combination of the
methods to process the DNA microarray data based on the minimum value of the
Shannon entropy in accordance with hereinbefore presented technique.

The analysis of the obtained charts allows us to conclude that the optimal meth-
ods in terms of the minimal value of Shannon entropy criterion are the following
ones: rma background correction method; invariant set normalization method; mas
methods PM correction and summarization. This combination of the methods was
used to process the investigated DNAmicroarrays. Figure 4.11 presents the boxplots
of genes expression profiles for the investigated samples of both the non-processed
(Figure 4.11a) and processed (Figure 4.11b) data.

As it can be seen from Figure 4.11b, the values of gene expressions are distributed
in the same range. The change of this range can be explained in the following way.
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Figure 4.11: Results of the DNA microchips processing

The expression values of the largest quantity of genes are low. But some of the genes
have significantly higher values of expression. It means that these genes determine
some important processes in the investigated objects. The expression values of these
genes determine the variation range of another genes expression. The analysis of
the boxplots allows us also to conclude that the values of the largest quantity of
gene expressions for various objects lie in a very narrow range. This can mean that
these genes are responsible for the functions that are inherent for all investigated
objects. However, each of the investigated samples contains genes, the expression
of which goes beyond the inter-quartile range. These genes are very important for
the following research since they allow us to distinguish the investigated objects by
their particularities.

4.2.2 RNA-molecules Sequencing Method

Applying RNA-molecules sequencing method allows obtaining the number of inves-
tigated genes for studied samples directly. In this reason, this method is more exact
in comparison with DNA-microchip technique. The number of genes determines
the level of this gene activity or its expression. At the next step it is necessary to
remove non-expressed genes for all samples and gene with low level of expression.
At this stage it is appear the problem concerning identification of boundary value
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Figure 4.12: A step-by-step procedure to transform a matrix of counts to the matrix
of highly-expressed informative genes

which allows dividing genes to lowly-expressed and highly-expressed. Moreover, the
matrix of counts of genes is not suitable for the following processing. Thus, initially,
the data should be normalized. This step assumes transformation the counts values
into the same suitable range. There are various normalized methods to process gene
expression values. However, it should be noted, that the task of objective selection of
appropriate normalizing method based on the quantitative criteria has not effective
solution nowadays.

Formal problem statement

A block chart of procedure to process the experimental data which are obtained
by RNA-molecules sequencing technique is presented in Figure 4.12. The stud-
ied dataset is presented as a matrix of counts, values of which are the number of
genes for appropriate sample. One of the most important steps of this procedure
implementation is the data normalizing. The normalized values of gene expression
profiles should have the equal ranges and their norms should be distinguish mini-
mally between each other. Moreover, the values of gene expressions should allow us
to identified the samples which belong to various clusters. Considering hereinbefore,
evaluation of quality of gene expression profiles normalizing will be performed visu-
ally by analysis of both box plot and kernel density plot, and based on quantitative
criterion.

Various techniques have been proposed over last years to pre-process the results
of RNA-molecules sequencing experiments [36, 64, 51, 63, 72, 107, 112, 95, 122].
These tools are differed between each other by types and thresholds which are used
to process the counts of genes and by algorithms which are used for filtering and
alignment of the investigated values. It should be noted that the choice of the
alignment algorithm has very great influence to the evaluation accuracy of RNA
molecules abundance in the sequenced samples. In this reason, testing different
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tools for processing of data of RNA-molecules sequencing experiments can help us
to choose the best technique for current type of data.

After implementation of the alignment procedure, it is necessary to normalize
the recovered values of miRNA counts for purpose of removing variations in the data
which have not biological origins and, as a result, can influence to the ranges of mea-
sured values change. Correct applying the normalizing technique allows minimizing
the experimental and the technical bias without noise introduce. In [46, 58] the
authors have proposed several normalizing techniques for data of RNA-molecules se-
quencing experiments. As a result of comparison of different normalization methods
effectiveness, the conflicting results were obtained in these works. So, the authors in
[58] proposed using the locally weighted linear regression and quantile normalizing
techniques. At the same time, they were discouraging against the use of trimmed
mean of M values (TMM technique). The obtained results were validated based on
the use of polymerase chain reaction (qPCR). In [46] the authors proposed the oppo-
site, to use against quantile normalization the TMM method. The simulation results
were used to confirm these findings. An assessment of the relative effectiveness of
various pre-processing techniques in terms of statistical criteria, bias, sensitivity and
specificity in order to detect the differential expressed genes can be achieved on the
basis of complex implementation of both qualitative and quantitative normalizing
quality criteria using current techniques of data processing [10].

Data set

We used the dataset GSE129336 generated from Gene Expression Omnibus (GEO)
database [1] as the experimental data during the simulation process. The data
contains the results of expression profiling by high throughput sequencing in hu-
man SH-SY5Y neuroblastoma cells [53]. The transcriptomic responses to Mn dose
(0,1,5,10,50,100 µM MnCl2 for 5 h) in the investigated cells with three biologi-
cal replicates per Mn treatment were examined during the experiment performing.
Thus, the examined samples can be divided into six clusters considering the Mn
dose. Each of the clusters contains three samples. This fact can be used to calculate
one of the criteria to estimate the quality of gene expression values processing. Each
of the samples contained 53186 of genes. So, the initial dataset contained 53186 of
genes or rows and 18 of columns or samples. The early analysis has shown, that there
were 27838 non-expressed genes (zero for all samples). Of course, these genes can
be removed from the data at the first step. Moreover, the lowly-expressed genes for
all samples can be removed from the data too. The search of the thresholding value
to remove lowly-expressed genes is one of the solved tasks within the framework of
this research.
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Removing lowly-expressed genes

As was noted before, the studied dataset contains 53186 of genes. However, 27838 of
genes are non-expressed for all samples (the count value is zero). Thus, the number
of the expressed genes can be changed from 53186 to 25348 of genes.

At the next step, it is necessary to remove lowly expressed genes considering
the appropriate thresholding value. The initial values of the counts of genes are
not suitable for solve this task since the range of the genes count value change is
very large (in the case of our dataset this range is changed from 0 to 47434890). In
this case it is necessary to transform the count value scale into other, more suitable
scale. To solve this tack, Bioconductor package contains cpm() function which allows
transforming the counts values into count-per-million values as follows:

x′ij = xij∑n
i=1 xij

· 106 (4.2)

where n is the number of rows, xij is the value in i-th row and j-th column. Applying
this function allows us to obtain the new, more suitable, range of the data values
change (from 0 to 380367.8).

The main idea for lowly-expressed genes removing is the following: the use a
nominal thresholding of 1 cpm value (this value is corresponded to 0 of log2(cpm)
value) allows dividing the genes into two groups (expressed and unexpressed). If
value of gene expression is more than this threshold, the gene is identified as ex-
pressed. Otherwise, the gene is identified as unexpressed. Considering the number
of samples in the clusters we can suppose that the genes should be expressed in at
least one cluster (three samples) for the further analysis.

Normalizing gene expression profiles

The following normalizing techniques were evaluated during the simulation process:
1) lcpm; 2) TMM ; 3) TMMwsp; 4) RLE ; 5) upper quartile scaling. Brief describing
each of these techniques is presented below:

1. lcpm is the simplest normalizing technique, the log2(cpm) values are calculated
during this technique implementation.

2. TMM is trimmed mean of M is the normalizing technique by total count
of scaling. The counts quantity for an appropriate target for all samples is
estimated during TMM technique implementation. If an expression value is
identified in the same proportion for all samples, this gene is identified as non-
differentially expressed. It should be noted that this technique does not allow
considering the potentially different RNA molecules which are presented in the
samples. Applying this method allows us to calculate a linear scaling index for
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appropriate sample considering weighted average after transforming the data
using log fold-changes (M) relative to the absolute intensity in the reference
sample (A) [121].

3. TMMwsp is TMM with singleton pairing. This technique is a variant of TMM,
in which the data with a high proportion of zeros are processed. Implemen-
tation of the TMM method assumes that the genes which have zero value in
either library are ignored when pairs of libraries are compared between each
other. As opposed to TMM method, implementation of the TMMwsp tech-
nique assumes that the positive counts from such genes are reused to increase
the quantity of features which are used to compare the libraries. The singleton
positive counts are paired up between the libraries in decreasing order of size
and then a slightly modified TMM method is applied to the reordered libraries.

4. RLE is relative log expression technique. Implementation of this method as-
sumes that the median library is calculated from the geometric average of all
columns and the median ratio of each sample to the median library is used as
the scale factor.

5. Upper quartile scaling is the upper-quartile normalizing technique, in which
the scale factors are calculated from the 75% quantile of the counts for each
of the libraries, after removing genes that are zero in all libraries.

Quantitative criterion to estimate the quality of data normalizing

The main idea to evaluate the quality of data normalizing is the following: as we
noted hereinbefore, the samples can be divided into six clusters considering the dose
of Mn. Each of the clusters in this case contains three samples. It is naturally
that informativity of gene expression profiles is determined by their ability to dis-
tinct the samples in different clusters. Thus, the quality of data normalizing can be
estimated based on clustering quality criterion which should consider the samples
distribution within clusters and the clusters distribution in the feature space. Con-
sidering the high dimension of the studied vectors, the correlation metric should be
used to estimate the proximity level between the vectors. This quality criterion of
the samples and clusters grouping was calculated as multiplicative combination of
Calinski-Harabasz criterion and WB-index [37, 149]:

QCint = K(K − 1)QCW 2

(N −K)QCB2 ; (4.3)

where: K is the clusters quantity; N is the samples quantity; QCW is an average
distance from samples to centers of the clusters where these samples are allocated;
QCB is an average distance between cluster centers. It should be noted that mini-
mum value of this criterion corresponds the best normalizing technique.
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Figure 4.13: Density plots of non-filtered and filtered gene expression values distri-
bution for neuroblastoma data samples

Experiments, results and discussions

Figure 4.13 presents the results of lowly expressed genes reducing in accordance
with hereinbefore described technique. To increase the charts informativity the data
preliminarily were transformed using log2(cpm) function. The number of genes was
reduced at this step from 25348 to 7435. The analysis of the obtained in Figure 4.13
diagrams allows concluding that level of genes expression informativity significantly
increased due to remove lowly expressed values. The same conclusion can be done
based on the box plots analysis (See Figure 4.14). In the case of filtered data use,
the values of gene expressions for all samples are distributed more evenly and they
are shifted to the side of larger values.

The next step of the data preprocessing is their normalizing. Figure 4.15 shows
the chart of the clustering quality criterion (4.3) versus the normalizing method. To
calculate this criterion values the data previously were divided into clusters consid-
ering the Mn dose. It should be noted that in the case of non-normalized filtered
data the value of this criterion was 100.05.

The analysis of the obtained results allows concluding that normalizing process
significantly increases the quality of the data in terms of the quality criterion (4.3).
The value of this criterion for non-normalizing data 100.05 and it has been decreased
more than 10 time. Comparison analysis of various normalizing methods has shown
that the easiest lcpm method is showed the worst results in comparison with other
methods. The difference between methods TMM, TMMwsp, RLE and Upper quartile
scaling is very small, however, the value of the criterion (4.3) achieved the minimum
one in the case of Upper quartile scaling method apply. This fact indicates the
reasonable of this method use for normalizing the current type of data.
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Figure 4.14: Box plots of non-filtered and filtered gene expression values distribution
for neuroblastoma data samples

Figure 4.15: Dot plot of the quality criterion VS the normalizing method
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Figure 4.16: Visualization of heteroscedasticity removing from the data

At the next step of this procedure implementation, it is necessary to remove
heteroscedasticity from the data. The analysis of the normalized data has shown
that in the case of RNA-seq data use, the variance values have not depended on the
mean values. Methods which are based on counts with the use of Negative Binomial
distribution are based on a quadratic mean-variance relationship. In limma package
of R software, linear modelling is performed using the normalized values. In this
case the data should be normally distributed and the mean-variance relationship
is evaluated with the use of precision weights calculated by the voom() function.
Figure 4.16 presents the results of this step implementation. The left chart in Fig-
ure 4.16 shows the mean-variance relationship of normalized gene expression values.
Usually, the voom-plot shows a decreasing trend between the means and variances
which are appeared due to an existence of both the technical incorrectness during
the sequencing experiment performing and the biological variation among the repli-
cate samples from various cell samples. Typically, the results of the experiments
with high level of biological variation are presented as a flatter trends. The variance
values in this case are not significantly changed for high expression values (right
chart in Figure 4.16). And otherwise, experiments including data with low biolog-
ical variation usually have tend to sharp decreasing the variance values. Moreover,
the voom-plot allows us to visual evaluate the quality of gene expression filtration
process. If filtration process of lowly-expressed genes is insufficient, then, the vari-
ance values should be decreased at the low end of the expression scale due to very
small gene expression values.

In order to visual summarize the results for all genes in obtained groups, we
create a mean-difference plots using the plotMD function of limma package. These
plots allow us to display log-Fold-change values from the linear model which can be
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Figure 4.17: Mean-difference plots of gene expression profiles for investigated groups

fitted against the average of log-expression values. These charts allow us to identify
differentially expressed genes. The charts are shown in Figure 4.17.

The result of visual analysis of the obtained diagrams allows concluding the
greatest number of genes in investigated groups have high level of differentially
expression (black colour or number 1). It means that these genes are informative
to distinct the samples for the further processing. However, the data contains some
quantity of lowly-expressed genes (red colour or zero number). It is means that these
data need the following processing for purpose of non-informative genes reducing in
terms of various quantitative criteria.

Figure 4.18 shows the box charts of the processed gene expression profiles. The
samples previously were reordered considering Mn dose from 0 to 100 µM. Analysis
of character of gene expressions distribution allows us to conclude about correctness
of data preprocessing step implementation. The values of gene expression have
the same and not so much ranges, all genes are enough highly-expressed for all of
the samples. However, it should be noted, that there is some quantity of lowly-
expressed genes (for example, in Mn_1 sample). This fact indicates about necessity
the further data processing on the basis of the use of current techniques of complex
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Figure 4.18: Results of gene expression profiles of neuroblastoma data processing

data processing.

4.2.3 Technique of Non-informative Genes Expression Profiles Re-
ducing

The gene expression profiles reducing in terms of the statistical criteria and Shan-
non entropy is one of the stages of the hereinbefore presented information technology
implementation. It is assumed that if variance or average of absolute value of gene
expression profiles is less than appropriate boundary values, or if Shannon entropy
of the appropriate gene expression profile is greater than the boundary value, then
these profiles are not informative and they can be removed from data without sig-
nificant loss of useful information. However, there is a problem of determining the
boundary values of the appropriate criteria, which allow us to divide objectively
the gene expression profiles into informative and non-informative ones. In addition,
the use of these criteria independently of each other is not objective because the
non-informativeness of the corresponding gene according to one of the criteria does
not mean that this gene is not informative according to other criteria. The complex
use of all criteria for determining the level of gene expression profiles informativity
is rational in this case. A gene, identified as non-informative based on the use of all
criteria can be removed from the data without significant loss of useful information.

In papers [13, 24] this problem is solved with the use of fuzzy logic technique
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Figure 4.19: Structural block diagram of fuzzy inference process

[144], which involves possibility for complex estimation of various criteria influence
on integral parameter, which determines the level of the corresponding gene infor-
mativity.

Stages of fuzzy inference process

Implementation of fuzzy inference process assumes transforming the values of the
input variables into the values of the output variables using fuzzy rules, which are
formed by experts in this subject field. The block diagram of fuzzy inference process
is shown in Figure 4.19. The stage of knowledge base formation involves:

• formation of sets of input X = {x1, ..., xn} and output D = {d1, ..., dm} vari-
ables;

• formation of the basic term-set with the corresponding membership functions
for each term: A = {a1, a2, ..., ai};

• formation a set of fuzzy rules agreed with the variables used:
m⋃

k=1
[

n⋂
i=1

(xi = ak
i ), for ωk] −→ D = dk

where k = 1,m is the quantity of logical statements, i = 1, n is the quantity
of terms used, ωk represents the weight of the k-th statement.

The fuzzification stage involves establishing the correspondence between the spe-
cific values of the input variables of fuzzy inference system and the values of the
membership function of the term corresponding to the given variable. For this,
the membership functions defined on the input variables are applied to their actual
values. In other words, the values of the membership functions µak

i (xi) versus the
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variables xi for the corresponding terms ak
i are determined. The fuzzification stage

is completed when all values of the membership functions bi = µ(ai) for all rules
which are included in this knowledge base of the fuzzy inference system are found.

The process of fuzzy inference includes the following steps: aggregation of pre-
requisites, activation, accumulation of fuzzy rules inferences and defuzzification. De-
pending on the method of the fuzzy logic process using the classical fuzzy model can
be implemented on the basis of the following algorithms: Mamdani, Sugeno, Larsen
and Tsukamoto. The choice of model type is determined by the nature of the data
used. In the case of creating a fuzzy model for evaluating the quality of gene expres-
sion profile on the basis of statistical and entropy criteria, the values of the input
functions do not require scaling, all membership functions can be isotropic, resulting
membership function can be represented as a simple set and the implementation of
the defuzzification process does not require the use of a special functional. In this
case, it is reasonable the use of Mamdani fuzzy inference algorithm, implementation
of which involves the following:

• determination of the "cutting" levels for prerequisite of each rule using the
operation min at the stage of aggregation:

αk = min(
n∧

i=1
[µak

i (xi)])

• determination of the degree of truth for each of the statements of the fuzzy
inference rules. At this stage the truncated membership functions of the cor-
responding fuzzy sets are determined:

µ′k(D) = (αk ∧ µk(D)),

where µk(D) is the membership function of the output variable corresponding
to the statement k, µ′(D) is the truncated function of the membership of the
output variable for the statement k;

• determination of the membership functions for the final fuzzy subset for the
output variable, which correspond to the appropriate combination of input
variables:

µΣ(D) =
m∨

k=1
[µ′k(D)]

• determination of the crisp value of the output variable for the correspond-
ing combination of input variables as the mass center of the obtained final
truncated membership function of the output variable.
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Figure 4.20: Boxplots of the investigated samples

Experiment

DNA microarrays data from database KEGG [84, 86, 85] were used as the experi-
mental ones during the simulation process. This data contains 38 of DNA microar-
rays of patients which were investigated on Alzheimer disease [97, 98]. The DNA
microarrays contain the information concerning genes expression of brain samples
from three Alzheimer’s Disease Centers. The first data contained 9 samples from
entorhinal cortex (EC) of brain. The second data contained 10 samples from hip-
pocampus (HIP) of brain. The third data contained 19 samples from primary visual
cortex (VCX) of brain. Each of the samples contained 54675 of genes. So, the initial
matrix of genes expression contained 38 of rows (samples) and 54675 of columns
(genes). Gene expression profile in this case is presented as a vector of genes ex-
pression which are determined for different samples. The character of the genes
expression values distribution in the investigated samples is presented in the Figure
4.20. The analysis of the Figure 4.20 allows us to conclude that the gene expression
profiles can be divided into three distinguish clusters in dependence on type of the
disease.

Three criteria were used for division of the gene expression profiles into informa-
tive and non-informative: variance, average of absolute values and Shannon entropy.
The main idea for this process implementation is the following: if variance and av-
erage of the absolute values are less and Shannon entropy is larger than the appro-
priate boundary values, then this profile can be removed from the studied data as
non-informative. In this case the gene expression values for various samples do not
allow us to recognize the investigated samples. The Shannon entropy criterion was
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Figure 4.21: Boxplots of the statistical and Shannon entropy criteria distribution

Table 4.1: Statistical analysis of the used criteria distribution
Crit Min Quart 1 Med Quart 3 Max
Abs 2.3 3.2 3.99 5.41 14.1
Var 0.01 0.2 0.39 0.64 18.8
Entr 1.22 2.61 2.67 2.7 2.71

calculated based on James-Stein shrinkage estimator [67]. This method is based on
the complex use of two different models: a high-dimensional model with low bias and
high variance, and a low-dimensional model with larger bias but smaller variance.
The character of these criteria distribution in the studied gene expression profiles
is presented in Figure 4.20 and Table 4.1. Figure 4.22 shows the membership
functions for both the input and output (quality of gene expression profiles) vari-
ables. As it can be seen, three linguistic terms for input variables (Low, Medium and
High) and five for output parameter (Very low, Low, Medium, High, Very high) were
used within the framework of the proposed fuzzy inference system for purpose of
the fuzzy rules formation. The range of the input variables change was divided into
fifty equal sections during the simulation process. Implementation of the simulation
process involves step-by-step increasing both the variance and average of the genes
expression from minimum to maximum values and decreasing the Shannon entropy
from maximum to minimum value. The value of the output parameter (quality) was
estimated for each of the investigated gene expression profiles with the use of the
fuzzy inference system. Conditions for division of the gene expression profiles into
informative and non-informative are the following:

var ≤ varlim; abs ≤ abslim; entr ≥ entrlim; (4.4)

If the conditions (4.4) are true, the gene expression profile is removed from the
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Figure 4.22: Membership functions of the fuzzy inference system
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database as non-informative. Otherwise, this profile is identified as informative and
it is used for the following processing.

The next stage of the simulation process implementation involved division of
the investigated objects which include only informative gene expression profiles into
three clusters in accordance with the type of the data. The calculation of the
clustering quality criterion was performed at this stage. The correlation distance
was used as the metric to estimate the proximity level of the investigated vectors:

d(A,B) = 1−
∑m

i=1(xai − x̄a)(xbi − x̄b)√∑m
i=1(xai − x̄a)2 ×

√∑m
i=1(xbi − x̄b)2 (4.5)

where m is the number of the informative genes; A and B are the studied objects;
xai and xbi are the expressions of the i-th gene for A and B objects respectively, x̄
is the average value of genes expression of the appropriate vector. The clustering
quality criterion (4.3) was used to evaluate the character of the data dictribution in
the clusters during reducing process implementation.

Figure 4.23 presents the structure block-chart of the algorithm for the investi-
gated data processing within the framework of the proposed technique. Its imple-
mentation involves the following steps:

1. Formation of the vectors of the fuzzy inference system input parameters: vari-
ance (var), average of gene expression profiles absolute values (abs) and Shan-
non entropy (entr). Setup of both the ranges and steps (dvar, dabs, dentr) of
these parameters change.

2. Setup of the fuzzy inference system. Formation of the basic term set of the
membership function for both the input and output variables and the set of
fuzzy rules agreed between input and output parameters.

3. Initialization of the fuzzy inference system initial parameters: var1 = varmin;
abs1 = absmin; entr1 = entrmax. Setup of the counter initial value of the fuzzy
inference process implementation: m = 1.

4. Implementation of the fuzzy inference process for current values of the input
parameters. Determination of the output parameter values (quality of gene
expression profiles).

5. Division of the gene expression profiles into informative and non-informative
taking into account the input parameters boundary values at appropriate stage
of this process implementation according to the condition (4.4).

6. Formation of the clusters. Clustering quality criterion calculation with the use
of the formuls (4.3).
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Figure 4.23: Structural block-chart of the algorithm for gene expression profiles
reducing
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7. If the counter value of fuzzy inference process implementation is less than max-
imum value, increasing of the boundary values of the input parameters and go
to the step 4 of this procedure. Otherwise, results analysis and determination
of the optimal boundary values of the input parameters which correspond to
the minimum value of the clustering quality criterion.

8. Reducing of the gene expression profiles with the use of the optimal boundary
values of the variance, Shannon entropy and average of the gene expression
profiles absolute values.

Results and discussion

Figure 4.24 presents the results of the fuzzy inference system simulation within
the framework of the proposed model. As was described hereinbefore, the ranges
of the input parameters were divided into fifty equal sections. The variance and
the average of absolute values of the gene expression profiles were changed from
minimum to maximum values (Figure 4.24a,b) and the value of Shannon entropy
was changed from maximum to minimum ones (Figure 4.24c) during the simulation
process. The value of the output parameter (quality of the gene expression profiles)
was calculated at the each step of this process implementation (Figure 4.24d).
Table 4.2 presents the linguistic estimates which vere used within the framework of
the fuzzy inference system. The logistic operator And was used during fuzzy rules
creation. The charts of both the clustering quality criterion and the number of the
informative gene expression profiles versus the step of the fuzzy inference process
implementation are presented in Figure 4.25.

The analysis of the charts allows us to conclude that the number of the infor-
mative gene expression profiles is decreased monotonically during the change of the
fuzzy inference system input parameters boundary values. At the same time, the
clustering quality criterion value is changed chaotically. As it can be seen from Fig-
ure 4.25a, the value of this criterion has three local minima during the simulation
process. It means that the used gene expression profiles in these cases allow us
to distinguish the investigated objects better in comparison with other cases. The
number of the informative gene expression profiles in these cases are the following:
615 at 31-st step; 222 at 35-th step; 35 at 42-nd step. The quality of the gene
expression profiles which were determined using fuzzy inference system belong to
the range from medium to high values in the first and in the second cases. In the
third case (step = 42) the quality of the gene expression profiles was identified as
very high one. This fact indicates the highest level of the genes expression profiles
informativity in terms of separating ability of the investigated objects. The bound-
ary values of the fuzzy inference system input parameters are the following: var
= 11.52, abs = 9.55, entr = 1.8 in the first case (step = 31); var = 13.05, abs =
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Figure 4.24: Results of the fuzzy inference system simulation

Table 4.2: Linguistic estimates of the input and output parameters

Number of rule Variance Average of
absolute values Shannon entropy Quality

1 Low Low Hg VLow
2 Md Low Hg Low
3 Low Md Hg Low
4 Md Md Hg Low
5 Low Low Md Low
6 Low Md Md Md
7 Md Low Md Md
8 Md Md Md Md
9 Hg Low Md Md
10 Low Hg Md Md
11 Hg Hg Low VHg
12 Md Hg Low Hg
13 Hg Md Low Hg
14 Md Md Low Hg
15 Hg Hg Md Hg
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Figure 4.25: Charts of both the clustering quality criterion (a) and the number of
the informative gene expression profiles (b) vs the step of the fuzzy inference process
implementation
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10.31, entr = 1.679 in the second case (step = 35); var = 15.74, abs = 12.2, entr =
1.467 in the third case (step = 42). The choice of the boundary values of the used
parameters is determined by the aims of the current task. In the case of the further
reconstruction of genes regulatory network the third case is the optimal one since the
number of the allocated genes allows us to reconstruct the genes network qualitative
for purpose of the following investigation of the character of genes interconnection
taking into account the status of the object. In the case of the step-by-step gene ex-
pression profiles clustering and biclustering for purpose of genes regulatory networks
reconstruction the first or the second cases are the optimal ones since the number
of the allocated gene expression profiles allows us to implement the gene expression
profiles clustering and biclustering for both the reconstruction of genes regulatory
networks and simulation of the reconstructed models.

4.2.4 Conclusions

In this chapter, we have presented the results of the research concerning gene ex-
pression array formation and following gene expression profiles reducing in order
to select the most informative genes in terms of statistical criteria and Shannon
entropy. In the first part of this chapter, we have proposed the technique of gene
expression array formation which were obtained based on DNA microarray exper-
iments. The initial data is presented as a set of DNA microchips, each of which
contains the matrix of light intensities, the values of which are proportional the ex-
pression values of the appropriate genes. Four stages have been performed during
the simulation process: background correction, normalization, PM correction and
summarization. Each of the stage assumed the use of different methods. The Shan-
non entropy criterion which is calculated based on James-Stein shrinkage estimator
has been used as the main criterion to estimate the genes expression informativity.
The simulation process has been performed based on R software with the use of
Bioconductor package functions. The lung cancer patients’ gene expression profiles
E-GEOD-68571 from database ArrayExpress have been used as the experimental
data during the simulation process. The results of the simulation have shown that
the optimal combination of the methods in terms of the minimum value of the Shan-
non entropy is the following one: rma background correction method, invariant set
normalization method and mas methods PM correction and summarization. This
combination of the methods has been used to process the investigated DNA mi-
crochips. The boxplots of both the non-processed and processed data have been
created as the simulation results. The analysis of the obtained results has shown
that the values of the largest quantity of gene expressions for various objects lie in a
very narrow range. It means that these genes are responsible for the functions that
are inherent for all investigated objects. However, each of the investigated samples
contains genes, the expression of which goes beyond the inter-quartile range. This
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fact can mean that these genes are very important for the following research since
they allow us to distinguish the investigated objects by their particularities.

Then, we have presented the results of the research to process the results of RNA-
molecules sequencing experiments. The dataset GSE129336 generated from Gene
Expression Omnibus database was used as the experimental one. This data contains
the results of expression profiling by high throughput sequencing in human SH-SY5Y
neuroblastoma cells. The initial data matrix contained counts of expressed genes
for studied samples. At the first step, we have removed lowly-expressed genes. The
number of genes was changed from 53186 to 7435. Then, we have compared various
normalizing technique using clustering quality criterion as the main criterion of
appropriate normalizing method effectiveness estimation. At the next steps we have
analyzed the obtained results using various visualization techniques. The analysis
of the processed genes expression values distributions allows concluding about high
effectiveness of the proposed technique, since its implementation allows allocating a
set of similarly distributed highly-expressed genes for the following processing.

Finally, we have proposed the hybrid model of gene expression profiles reducing
based on the complex use of fuzzy inference system and clustering quality criterion.
This model is presented as the algorithm of step-by-step data processing. The
variance, the average of absolute values and Shannon entropy of gene expression
profiles have been used as the boundary criteria for division of the gene expression
profiles into informative and non-informative ones. Three groups of gene expression
profiles of the patients which were investigated on Alzheimer disease have been used
during the simulation process. The first data contained 9 samples from entorhinal
cortex of brain. The second data contained 10 samples from hippocampus of brain.
The third data contained 19 samples from primary visual cortex of brain. Each of
the samples contained 54675 of genes. The simulation process was performed in
the following way. Firstly, the vectors of both the statistical criteria and Shannon
entropy for the investigated gene expression profiles have been formed. The ranges
of these criteria changes were divided into fifty equal sections and these values have
been used for setup of the fuzzy inference system parameters. Then, the values of
variance and average of absolute values of the gene expression profiles were changed
monotonically from minimum to maximum and Shannon entropy from maximum to
minimum values within the range of these parameters variation. The values of both
the quality of gene expression profiles and the clustering quality criterion have been
calculated at the each step of this process implementation. The optimal boundary
values of the used criteria (var, abs, entr) were determined based on local minima
of the clustering quality criterion. The results of the simulation have been shown
that the best values of the used parameters in terms of the minimum value of the
clustering quality criterion are the following: var = 15.74, abs = 12.2, entr = 1.467.
In this case 35 of gene expression profiles were allocated. These genes can be used
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for both reconstruction of genes regulatory networks and simulation of the obtained
models.

However, it should be noted that the solution concerning determination of the
parameters boundary values which correspond to the clustering quality criterion
minimum values should be done taking into account both the aims of the current
task and the type of the used data. If previously division the samples into clusters is
problematic, we can select the genes for the following processing considering number
of the genes expression profiles which should be used for the following processing
with the use of cluster-bicluster analysis. In any case, the propsed technique allows
selecting informative genes in terms of various quantitative criteria objectively.



Chapter 5

Gene Regulatory Networks
Reconstruction

5.1 Introduction
In most cases, current systems of information processing are based on the use of
analogies of biological processes functioning which are occurred in living organisms.
Such systems are the follows: immune system of organism, neural network, gene net-
work, et.al. Their particularities are high level of complexity, ability of self-learning,
ability to information recognizing and decisions making, decentralized parallel infor-
mation processing. In this reason, development of current artificial intelligent models
should be carried out based on the complex approach considering complex use of
techniques of molecular biology, mathematics, informatics, physics, etc. Implemen-
tation of this approach creates the conditions for better understanding particularities
of operation of the biological system in order to influence to this process.

Reconstruction of gene regulatory networks and further simulation of the recon-
structed models form the basis for investigation and analysis of both the character
of molecular systems elements interconnections and influences of these interconnec-
tions to functional possibilities of the investigated objects. The complexity of gene
networks reconstruction is determined by the follows: the experimental data which
are used for the reconstruction process usually does not allows defining the network
structure and pattern of genes interconnection in the network. Moreover, large quan-
tity of genes complicates the interpretation of the network elements interconnections.
In this case, it is necessary to conduct research concerning evaluation of both the
network topology and the pattern of genes interconnection in network with the use
of experimental data obtained by the use of both the DNA microchip experiment
or RNA-molecules sequencing method. Qualitatively reconstructed gene regulatory
network allows investigating the pattern of the biological organism development at

131
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Figure 5.1: Structural block chart of a general process of reconstruction and valida-
tion of the model of a gene regulatory network

the genetic level. It creates the conditions for both making new effective medicines
and development of methods of early diagnostics and effective treatment of complex
diseases. This fact indicates the actuality of the research in this subject area.

There are various databases of biological gene regulatory networks (GRN) of
different organisms [99] that allows visualizing and exploring a network topology
of the appropriate biological object. One of currents methods employed for the
reconstruction of GRN is the identification of a network by comparing it with a
known network of the relevant biological organism. In this case, it is necessary
to determine the quality criteria for evaluation of the network topology consider-
ing appropriate topological parameters and existence of both the genes and links
between corresponding genes in reconstructed and biological selected networks. An-
other important stage when reconstructing a network is the validation process of the
reconstructed models based on quantitative criteria for assessing the network qual-
ity. A structural block chart of a general process of these procedures implementation
aimed to the reconstruction and validation of GRN is shown in Figure 5.1. As it can
be seen from Figure 5.1, the process of GRN reconstruction and validation assumes
a comparative analysis of parameters of the reconstructed and biological network
with the purpose of determining an optimal network topology and the character of
interrelations between relevant nodes.
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5.2 Literature Review and Problem Statement
Current biological system of living organisms is a complex dynamic network of inter-
acting elements with different purposes whose state can change under the influence
of external conditions [106]. Reconstruction and simulation of gene networks are
rather complicated tasks that do not have an unambiguous solution nowadays. The
first studies concerning reconstruction of biological networks based on experimental
data were published at the end of the 90s of the last century [45, 96, 56, 39]. These
papers proposed several approaches focused to a given type of simulation. Studies
[138, 105, 48] reviewed several methods related to the reconstruction and simulation
of gene regulatory networks based on gene expressions data. The authors consid-
ered in detail stages of GRN reconstruction and they also performed a comparative
analysis of different techniques with outlined advantages and shortcomings of the
respective method.

Nowadays, there is sufficient information about the properties of gene regulatory
networks in natural biological systems. So, in papers [141, 4] the authors formulated
the rules for GRN reconstruction and simulation, which allows significantly limiting
the dimensionality of search space for the optimal network. The sparsity property
is the most common and important feature of GRN. This property means that the
topology of GRN is sparse, meaning that each gene has a small number of regulatory
inputs [109]. However, it should be noted that there are a small number of genes
(master-genes) which are able to control hundreds of other genes. A given property
is used to limit the search space of the optimal solution by limiting the number
of regulatory links. Papers [101, 100] show that the frequency distribution of the
number of regulatory inputs of nodes at a gene network of biological systems is often
governed by the law of Pareto distribution. This means that in the case of a non-
scalable network most genes are loosely linked, but there are several nodes with a
high number of links. These nodes are named nodes-concentrators. They correspond
to genes that perform most of the overall regulation of other nodes in the network.
The existence of a concentrator leads to the localization of the network, since all the
nodes in the network are connected to concentrators via short links, the quantity of
which is limited. In addition, the concentrators improve stability of thenetwork to
external influences and various kinds of fluctuations, since they link a network and
do not alow splitting the network into separate fragments.

The next important property of GRN is modularity. This property means that
genes in the network cannot be regarded as independent elements. In a general case,
genes can be divided into functional, perform the function of control over other genes
(concentrators), and genes which function concordantly performing a joint function.
It is obvious that in this case genes can be grouped in modules or clusters depending
on their functional similarity.
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Thus, based on hereinbefore presented analysis, we can conclude that solution
the problem of gene regulatory network reconstruction based on gene expression
profiles with optimal topology, which corresponds to biological gene network, is one
of the current direction of modern bioinformatics.

5.3 Topological Parameters of Gene Regulatory Net-
work

The process of gene regulatory network reconstruction based on gene expression
profiles assumes a possibility of creation of different network topologies which differ
from each other by the number of nodes, the number of arcs that connect respective
nodes, and the character of bonds between the nodes. As a result, it is necessary
to develop the technique to evaluate a network topology using quantitative quality
criteria. This allows us to select reasonably the optimal network topology for re-
spective biological object. Figure 5.2 shows an example of yeast gene regulatory
network topology [127].

Analysis of the structure and topology of gene regulatory network allows us to
conclude that it can be presented as a directed or a non-directed graph whose arcs
can have weight coefficient (if the case of presence of weights which determine the
strength of the connections). Therefore, the graph theory can be used to define the
parameters of the network topology. Classification of basic topological parameters
of GRN is shown in Figure 5.3 [5]. The follows simple topological parameters can
be used to evaluate the network topology:

• Number of network nodes. This parameter determines the general number of
genes (nodes) interconnected between each other.

• Degree of a network node or its connectivity is the total weight of connections
(arcs) that connect a given node with neighbour nodes:

ki =
ni∑

j=1,j 6=i

wij (5.1)

where ni is a number of neighbour nodes of i-th node; wij is the weight of arc
which connect the nodes i and j.

• Average of degree or average of connectivity is determined as an average of
degrees of all network nodes:

k = 1
n

n∑
i=1

ki (5.2)
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Figure 5.2: An example of yeast gene regulatory network
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Figure 5.3: Classification of gene regulatory networks topological parameters

• Maximal degree determines the maximal value of elements of the connectivity
vector for all nodes in the network:

kmax = max(k1, kn) (5.3)

The high value of this parameter indicates a high level of complexity, since
all network nodes have a large number of connections with their neighbours.
This fact complicates the interpretation of the reconstructed network. It is
obvious that the minimal value of this parameter is optimal if the number of
the network nodes is maximal one.

• Network density is defined as the ratio of the number of weighted connections
between the nodes to the maximal number of connections between the nodes
in the network:

DS =
2 ·

∑n−1
i=1

∑n
j=i+1wij

n · (n− 1) (5.4)

The density value is varied from 0 to 1. If DS = 0, then there is no connection
between appropriate nodes, in the case of DS = 1 we have a fully connected
network.
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• The clustering coefficient of a node determines the probability that the near-
est neighbours of a current node are directly connected between each other.
The network clustering coefficient is defined as the average of the clustering
coefficients of all network nodes:

CL = 1
n

n∑
i=1

ci

0.5 · ki(ki − 1) (5.5)

where n is a number of the network nodes, ci is a number of connections of
i-th node with neighbour nodes, ki determines the numbers of neighbours of
i-th node including this node which can make up a complete cluster. This
parameter is a quantitative measure of the network connectivity. If its value
is unity, the network is fully connected. In the case of zero values, there are
no connections between the neighbours of the network nodes.

• The network centralization parameter determines the degree of proximity to
the star topology:

Centr = n

n− 2(kmax

ni1 −DS) (5.6)

If the network topology looks like a lattice, where all nodes are connected
equally, the value of this parameter is zero. A higher value of the centralization
parameter indicates a higher degree of network similarity to a star topology.

• Network heterogeneity determines the degree of non-uniformity of the network
topology and it is expressed using the variance and mean values of the average
degree of nodes as follows:

GT =
√
k

mean(k)
(5.7)

Homogeneous network has zero heterogeneity value and otherwise, increas-
ing the value of this parameter indicates a greater level of the network non-
uniformity.

The indicated parameters make it possible to make a preliminary assessment of
the GRN model topology. At a constant number of nodes, lower values of density
and clustering of the network and a larger heterogeneity value testifies to the higher
quality of network topology. A higher value of centralization coefficient indicates
the degree of proximity of network topology to a star-shaped structure. Analysis
of hereinbefore defined topological parameters allows us to define the steps of the
network topology formation. On the one hand, the network should contain the
maximum number of examined genes. On the other hand, network density and
clustering coefficient should be minimal, and the coefficients of heterogeneity and
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centralization should have maximal values. To make a final decision concerning
network topology, it is necessary to calculate the complex topology index which
should include the private topological parameters as the components. To solve
this task, we have proposed a Harrington’s desirability function [66], plot of which
is shown in Figure 2.7. Implementation of this technique assumes transforming
topological parameters scales into non-dimensional parameter Y , values of which are
varied within the range from -2 to 5. Private values of desirabilities are calculated
as follows:

dpr = exp(−exp(−Y )) (5.8)
The algorithm to calculate the general topological index involves the following steps:

1. Transformation of topological parameters scale into non-dimensional parame-
ter Y scale in accordance with following linear equations:

YDS = aDS − bDS ·DS;
YCL = aCL − bCL · CL;
YCentr = aCentr + bCentr · Centr;
YGT = aGT + bGT ·GT.

(5.9)

The a and b coefficients for appropriate topological parameter are determined
empirically considering the appropriate topological parameter boundary val-
ues.

2. Calculation of the non-dimensional parameter Y for each of the topological
parameters by the equations (5.9).

3. Determination of private desirabilities for the used topological parameters by
the equation (5.8).

4. Calculation of the general topological index as geometric average of all private
desirabilities:

GTP = n

√√√√ n∏
i=1

dpri (5.10)

The maximal value of the index (5.10) indicates the optimal network topology in
terms of the used topological parameters.

5.4 Reconstruction of GRN Based on Correlation In-
ference Algorithm

The process of GRN reconstruction based on correlation analysis assumes the cal-
culation of correlation coefficients between all pairs of the gene expression profiles.
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Since in the case of analysis of the matrix of gene expressions, the vectors of profiles
are the sequences of rational numbers, it is reasonable to use the Pearson method
for calculating a correlation between respective profiles:

r(Xa, Xb) =
∑m

i=1(xai − xa)(xbi − xb)√∑m
i=1(xai − xa)2 ·

√∑m
i=1(xbi − xb)2 (5.11)

where Xa and Xb are the vectors of the investigated gene expressions profiles; m is
the number of attributes in the respective vectors; xa and xb represent the average
values of the profiles Xa and Xb respectively. The pair correlation coefficient in
the case of its significance represents the strength of the relationship between the
corresponding nodes of the network. When using a full matrix of pair correlation
coefficients, a gene network is fully connected, since there is connection between
all the nodes of a given network. The weight of the arc is equal to the correlation
coefficient between a pair of gene expression profiles whose relations are assessed.
Network topology in this case is determined by the value of thresholding coefficient τ
which defines the thresholding value of the existence of a relationship between a pair
of genes in the network. A weight factor of the arc which connects the corresponding
genes is defined as follows:

w(Xa, Xb) =
{

0, if r(Xa, Xb) < τ ;
r(Xa, Xb), if r(Xa, Xb) ≥ τ.

(5.12)

Simulation of the process of a gene regulatorz network reconstruction based on
gene expression profiles was performed based on Cytoscape software [127] using the
gene expression profiles of data moe430a from the database ArrayExpress [32]. The
data were obtained using DNA-microchip experiments and they contained informa-
tion concerning the genes expressions of mesenchymal cells of two types: nerve crest
and mesoderm. The matrix of initial data consisted of 147 of rows or genes and 20
of columns or the examined samples. A block chart of the algorithm to implements
the process of GRN reconstruction based on the correlation inference algorithm is
shown in Figure 5.4. Implementation of this process assumes the following steps:

1. Formation of the input data as a matrix where rows are the genes which
represent nodes of a gene network, and columns are the investigated samples.

2. Setup the range and the step the thresholding coefficient change. Initializing
the initial value of the threshold coefficient τ = τmin.

3. Reconstruction of gene regulatory network within the range of the thresholding
parameter change from minimal to maximal value. Calculation of the topology
parameters at each step of this procedure implementation.
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Figure 5.4: Block diagram of algorithm to determine the optimal value of threshold
coefficient when using a correlation inference algorithm
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Figure 5.5: Charts of the simple parameters versus the thresholding coefficient: a)
number of genes; b) centralization coefficient; c) clustering coefficient; d) density
and heterogeneity of the network

4. Calculation of general topology index by formulas (5.8)-(5.10) at each step of
this procedure implementation.

5. Analysis of the obtained results, determining the value of threshold coeffi-
cient that matches the optimal GRN topology (maximum value of the general
topology index).

Figure 5.5 shows the results of the algorithm operation in the form of charts of
the simple topological parameters versus the thresholding coefficient. The value of
the threshold coefficient was changed within the range from 0.3 to 0.7 step 0.05. An
analysis of the charts allows concluding that within the range of the thresholding
coefficient from 0.3 to 0.45 the number of genes in the network does not change.
In this case, the values of both the centralization and heterogeneity coefficients are
increased while the values of the of clustering and density coefficients are decreased.
This fact indicates the improvement in the network topology by reducing the number
of connections between appropriate nodes at a constant number of genes. When
the value of threshold coefficient is achieved 0.5, the number of genes is reduced
from 147 to 146 while the centralization coefficient achieved its maximum. Upon
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Figure 5.6: Charts of the simple parameters versus the thresholding coefficient, while
the value of the thresholding coefficient is changed within the range from 0.45 to
0.55 with a step 0.01: a) number of genes; b) centralization coefficient; c) clustering
coefficient; d) density and heterogeneity of the network

further increase of the threshold coefficient value, the number of genes and the
value of the centralization coefficient are decreased sharply. This fact indicates the
deterioration of the network topology structure. The obtained results allows us to
define a narrower range of the threshold coefficient value variation for purpose of
determining the optimal topology of a gene network.

Figure 5.6 shows the charts of the simple topological parameters versus the
value of thresholding coefficient while it was changed within the range from 0.45
to 0.55 with a step 0.01. In this case, the several genes linked between each other
but separated from the main network were removed from the data. Figure 5.6
shows that the values of thresholding coefficient which form the structure of a gene
network is determined by four topological parameters: clustering coefficients, cen-
tralization, the network homogeneity, and nodes density. It should be noted that
the optimal network structure corresponds to the minimal values of the density and
clustering coefficients, and to the maximal values of the centralization and hetero-
geneity coefficients. Figure 5.7 shows the chart of general topological index versus
the thresholding coefficient whose value was changed within the range from 0.45 to
0.55 with a step 0.01. Analysis of the Figure 5.7 has shown that the optimal value
based on simple parameters for the estimation of the gene network topology is the
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Figure 5.7: Charts of the general topological index versus the thresholding coefficient
value while applying correlation inference algorithm

value of thresholding coefficient 0.49. In this case, the network contains 147 of genes,
centralization coefficient reaches a maximum, while clustering coefficient reaches a
minimum. The values of both the density and heterogeneity coefficients within the
range of the thresholding coefficient change from 0.45 to 0.49 are changed monotoni-
cally towards to lower and larger values respectively. In the range from 0.49 to 0.51,
the rate of these parameters change is zero. The value of the general topological in-
dex also reaches a maximum when a value of thresholding coefficient is 0.49. Figure
5.8 shows the result of the gene regulatory network reconstruction when applying
the correlation inference algorithm with a thresholding coefficient value of 0.49.

The conducted research allows us to propose a technique of gene regulatory
network reconstruction based on the correlation inference algorithm. Structural
block chart of the algorithm of this technique implementation is presented in Figure
5.9. Practical implementation of a this algorithm assumes the following stages:

Stage 1. Problem statement. Data formation.

1. Formation of initial data as a matrix where rows are the genes and
columns are the stadied samples.

Stage 2. Approximate estimation of both the range and step of the thresholding
coefficient value change.

1. Setup the range and step of the thresholding coefficient value change.
Initialization of the initial value of thresholding coefficient τ = τmin.

2. Reconstruction of GRN whose topology matches the assigned value of
thresholding coefficient.
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Figure 5.8: Result of gene network reconstruction while applying the correlation
inference algorithm
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Figure 5.9: Technique of gene network reconstruction based on correlation inference
algorithm
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3. Calculation of topological parameters for the reconstructed gene regula-
tory network.

4. If a value of the thresholding coefficient is less than the maximal value,
then increasing this value by dτ (step for a change in threshold coefficient)
and escape to the step 3 of this procedure. Otherwise, creating charts of
the topological parameters within the range of the thresholding coefficient
change.

5. Analysis of the obtained results. Determining the new, narrower, range
and a smaller step of the thresholding coefficient variation.

Stage 3. Determining the optimal value of the thresholding coefficient.

1. Reconstruction of a gene regulatory network within the framework of new
interval of the threshold coefficient change. Calculation of the topological
parameters at each step of this procedure implementation. Calculation
of the general topological index.

2. Create the charts of both the simple topological parameters and the gen-
eral topological index versus the thresholding coefficient.

3. Analysis of the obtained results. Determination of the thresholding coef-
ficient optimal value.

Stage 4. Reconstruction of gene regulatory network.

1. Reconstruction of GRN applying the optimal value of the thresholding
coefficient.

5.5 Reconstruction of GRN Based on ARACNE Infer-
ence Algorithm

ARACNE inference algorithm (Algorithm for the Reconstruction of Accurate Cel-
lular Networks) of gene regulatory networks reconstruction forms the links between
genes (arcs) based on the analysis of statistical hypotheses concerning presence or
absence of appropriate link [104]. As a result, the vector of probabilities is formed
for each gene at the stage of gene network reconstruction. Each of the elements of
this vector determines both the existence and the force of appropriate link. The
estimation of the degree of interconnection between a pair of genes in the case of
N connection variants is performed using the Gaussian kernel estimation based on
Shannon entropy:

I(gi, gj) = 1
N

N∑
k=1

log
Hk(gi, gj)

Hk(gi)Hk(gj) (5.13)
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where H(g) is a Shannon entropy which is calculated for profile of g gene. The
principal idea of ARACNE algorithm is the following: if there are different paths of
appropriate genes linking in the network, each of them is characterized by degree
of the appropriated connection I(gi, gj), then, it is selected the connection which
satisfied the following condition:

I(gi, gj) = min[I(gi, gs), I(gs, gp), ..., I(gh, gj)] (5.14)

where gs, gp, ..., gh are intermediate genes through which are linked the genes gi and
gj . As a result, we obtain a network of interacting genes, the weight of the linkage
between the corresponding genes is determined by degree of linkage between the
genes. The number of relationships in network is also limited by the appropriate
thresholding coefficient. It is assumed that if the weight of the corresponding link
is less than the value of the thresholding coefficient, the relationship between these
genes is broken. In this way a topology of gene network is formed.

Figure 5.10 presents the structure block-chart of the algorithm to estimate the
thresholding coefficient optimal value which corresponds to optimal gene network
topology in terms of used topological parameters [11]. Implementation of the algo-
rithm assumes the next steps:

1. Problem statement and the experimental dataset formation. The data is
formed as a matrix, where rows and columns are the investigated genes and
samples respectively.

2. Data preprocessing. Implementation of this step involves data normalizing
and non-informative genes reducing. The number if the investigated genes
significantly decreases at this step.

3. Setup the range and the step of the thresholding parameter value variation.

4. Reconstruction of gene regulatory network within the range of the threshold-
ing coefficient change from minimum to maximum value. Calculation of the
topological parameters for each thresholding coefficient value.

5. Analysis of the obtained results. Setup a new significantly less range and step
of the thresholding parameter value variation.

6. Reconstruction of gene regulatory network within the new range of the thresh-
olding parameter variation. Calculation of the general topological index at
each step of this procedure implementation.

7. Result analysis. Determination of the optimal value of the thresholding pa-
rameter. This value corresponds to the maximum of the general topological
index in the case of maximal quantity of genes in network.
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Figure 5.10: A structure block-chart of algorithm to form the gene regulatory net-
work optimal topology while applying ARACNE inference algorithm
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Figure 5.11: Charts of network topological parameters versus the thresholding coef-
ficient values in the case of range of the thresholding coefficient variation from 0.1
to 0.9

8. Gene regulatory network reconstruction using optimal thresholding coefficient
value.

5.5.1 Implementation of the Technique of GRN Reconstruction
Based on ARACNE Inference Algorithm

Similarly to technique of gene regulatory network reconstruction based on correla-
tion inference algorithm, simulation of the gene network reconstruction based on the
ARACNE inference algorithm was also performed based on the Cytoscape software
using gene expression profiles of moe430a dataset from ArrayExpress database. Ini-
tially, the value of the thresholding coefficient was changed within the range from
0.1 to 0.9 with a step 0.1. The charts of the topological parameters versus the
thresholding coefficient value are presented in Figure 5.11. The network clustering
coefficient was equal zero, that indicates an absence of the relationships between
neighbours of genes in network. The analysis of the obtained charts allows us to
conclude that the optimal value of the thresholding coefficient is allocated within
the range from 0.3 to 0.5, since the values of the centralization and heterogeneity
coefficients in this range achieve the local maxima and the value of the density of the
network nodes achieves the local minimum. The number of genes in this case varies
from 147 to 146, what is quite acceptably. Figure 5.12 shows the same charts for the
case of range of the thresholding coefficient from 0.3 to 0.5. Step of this coefficient
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Figure 5.12: Charts of network topological parameters versus the thresholding coef-
ficient values in the case of range of the thresholding coefficient variation from 0.3
to 0.5

change was 0.02. As it can be seen from Figure 5.12, the analysis of the obtained
charts does not allow us to determine the optimal value of the thresholding coeffi-
cient, since the coefficients of centralization, heterogeneity and density have three
local extrema, which disagree between each other. In accordance with hereinbefore
presented algorithm it is necessary to calculate the general topology index for each
combination of the thresholding parameters. The plot of the general topology index
versus the thresholding coefficient is showed in Figure 5.13.

The analysis of the obtained results allows concluding that the maximal value of
the general topological index is achieved in the cases of 0.33 and 0.42 values of the
thresholding coefficients. However, it should be noted that in the second case, the
gene network contains five genes less. Thus, the value of the thresholding coefficient
of 0.34 is more acceptable in terms of the number of genes in the network. The
result of gene regulatory network reconstruction while applying ARACNE inference
algorithm is shown in Figure 5.14. Figure 5.15 shows the charts of the topological
parameters distribution for the reconstructed gene regulatory network.

The analysis of the charts indicates the higher level of structuredness of gene
networks, reconstructed based on ARACNE inference algorithm, since the number
of genes with high degree is not so much, the values of the topological coefficient,
number of shared neighbours and average of neighbours connectivity are decreased
monotonically during the number of neighbours increase. Moreover, the comparison
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Figure 5.13: Charts of the general topological index versus the thresholding coeffi-
cient value while applying ARACNE inference algorithm

Figure 5.14: Result of gene network reconstruction based on ARACNE inference
algorithm
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Figure 5.15: Charts of topological parameters distribution for GRN reconstructed
using ARACNE and correlation inference algorithms: a,b) distribution of degree
of the network nodes; c,d) distribution of the topological coefficient; e,f) distribu-
tion of number of shared neighbours; g,h) distribution of average of the neighbours
connectivity
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of the obtained charts with appropriate charts for other reconstructed valid gene
networks [127] shows high level of their similarity. This fact also allows concluding
about the correctness of the proposed technique. Of course, the effectiveness of the
reconstructed gene regulatory network can be estimated by the further simulation
process implementation.

5.6 Technique of Validation of the Reconstructed GRN
Block chart of the process of gene regulatory network reconstruction and validation
of the reconstructed models (Figure 5.1) involves a comparative analysis of the
selected biological gene network and the reconstructed network based on gene ex-
pression profiles. This approach assumes the development of a technique of quality
evaluation of the gene network reconstruction procedure by comparison of the topolo-
gies of both the basic network and networks reconstructed based on gene expression
profiles. Within the framework of our research, gene networks are considered to be
completely adequate if the character of relations between relevant genes in the basic
and reconstructed networks fully coincides. In this case, we estimate the presence of
a relationship between appropriate genes in different networks. If there is a connec-
tion, it is considered to be equal 1. In the case of absence of such a connection, this
value is 0. The ROC analysis (Receiver Operator Characteristic), which is applied to
visualize the results of binary classification using errors of the first and second types
[52], was used as the basic technique for comparative analysis of the investigated
gene regulatory networks. According to ROC analysis theory, at the first stage we
calculate the quality parameters for the classification of relationships between genes
in relevant networks. Such parameters are:

• TP (True Positives) is the number of relationships between pairs of matching
genes that coincide in the two networks (true positive cases).

• TN (True Negatives) is the number of matching negative relationships between
pairs of corresponding genes in different networks (true negative cases).

• FN (False Negatives) is the number of relationships between pairs of genes,
reconstructed based on full data which do not identified in the network, recon-
structed on the basis of a limited number of genes and conditions (error of the
first kind). In this case, the relationship that exists between a pair of genes in
the full network is missing between the pair of genes in the examined network.

• FP (False Positives) is the number of missing links between the relevant genes
in the network, reconstructed based on full data that are identified as existing
in the network, reconstructed on the basis of a limited number of genes and
conditions (error of the second kind). In this case, a connection between a pair
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of genes that is missing in the full network is identified as existing between a
given pair of genes in the examined network.

Based on these parameters, we calculate relative parameters for the reconstructed
network quality assessment:

• the percentage of true positive cases or the sensitivity of the model is the ratio
of the number of true positive connections to the full number of connections
between the examined genes which is estimated based on the results of analysis
of the gene network reconstructed based on complete data:

Sc = TPR = TP

TP + FN
· 100% (5.15)

• percentage of false positive cases:

FPR = FP

TN + FP
· 100% (5.16)

• specificity is the percentage of missing links that were correctly identified in
the network reconstructed based on a limited number of genes and samples:

Sp = TN

TN + FP
· 100% (5.17)

It should be noted that the percentage of false positive cases and the specificity
are related via ratio: FPR = 100 − Sp. A larger specificity value corresponds to
a smaller percentage of incorrectly identified cases of the presence of links in the
complete network. ROC-curve is presented as a chart of sensitivity Sc against the
percentage of incorrect positive cases FPR = 100−Sp. A larger value of sensitivity
and a lower FPR value corresponds to a higher degree of the adequacy of the
model. In this case, the area under a ROC-curve (AUC) reaches the highest value.
Another criterion that determines the adequacy of a model is calculated as the ratio
of sensitivity to the percentage of false positive cases:

RC = Sc

FPR
(5.18)

A higher value of this criterion corresponds to a larger level of adequacy of gene
network reconstructed on the basis of data in biclusters to the basic gene network.

Figure 5.16 shows a stricture block chart of the gene regulatory networks val-
idation technique. In this case, we used as the basic the gene regulatory network
reconstructed based on full set of gene expression profiles. Practical implementation
of this technique assumes the following steps:
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Figure 5.16: Structure block chart of gene regulatory networks validation technique
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1. Problem statement. Forming an array of gene expression profiles. Data pre-
processing: filtering, reducing and clustering of gene expression profiles.

2. Reconstruction of basic gene networks based on full set of the obtained gene
expression profiles.

3. Bicluster analysis of the gene expressions data. Allocation of the biclusters.

4. Reconstruction of gene regulatory networks based on gene expressions data of
the relevant biclusters.

5. Determination of the absolute quality parameters for the classification of rela-
tionships between appropriate genes in the reconstructed networks.

6. Calculation of relative quality parameters Sc, Sp, FPR in accordance with
the formulas (5.15)–(5.17).

7. Creation of ROC curve and evaluation of area under it. Calculation relative
quality criterion of gene regulatory networks reconstruction by formula (5.18).

8. Selection of the model whose area under the ROC curve is the largest or which
corresponds to the higher value of the relative quality criterion (5.18).

5.6.1 Validation of the GRN Reconstructed Using Correlation In-
ference Algorithm

Figure 5.17 shows the results of bicluster analysis of gene expression profiles of
data moe430a [32], performed using the biclustering algorithm ensemble [81] which
is implemented within the framework of the technique presented in the section 3.3.3.
At the first stage, the value of a parameter that determines the ratio of the number of
rows and columns in biclusters was fixed at the level of 0.15, the value of thresholding
coefficient was changed within the range from 0.01 to 0.5 with a step 0.01. The 0.12
value of the thresholding coefficient was fixed as the result of Figure 5.17b analysis
(First global minimum). Increasing the value of this criterion is not reasonable, since
it leads to sharp increasing the number of small biclusters (Figure 5.17a).

At the second step, the parameter which determines the ratio of rows and
columns in biclusters was changed within the range from 0.05 to 0.12 with a step
0.01. As in can be seen from Figure 5.17, the minimal value of the internal biclus-
tering quality criterion corresponds to the 0.1 value of ratio of rows and columns
in biclusters. The results of gene expression profiles biclustering while the ensemble
biclustering algorithm applying with thresholding coefficient 0.12 and ratio of rows
and columns in biclusters 0.1 are presented in Table 5.1. Reconstruction of gene
regulatory networks was carried out using biclusters contained more than ten of
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Figure 5.17: Results of the bicluster analysis of gene expression profiles of data
moe430a: a) chart of the number of biclusters vs the thresholding coefficient; b)
chart of the biclustering quality criterion vs the thresholding coefficient; c) chart of
the biclustering quality criterion vs the ratio of rows and columns in biclusters

Table 5.1: Distribution of rows and columns in the biclusters obtained as a result of
the gene expression profiles of moe430a data biclustering

BC 1 2 3 4 5 6 7 8 9 10 11 12 13
Genes 23 16 9 13 5 39 11 44 32 28 24 24 6
Samples 8 8 4 9 8 8 7 12 12 6 11 9 6
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Figure 5.18: Charts of the general topological index versus the value of the thresh-
olding coefficient for gene regulatory networks reconstructed using the correlation
inference algorithm based on data from biclusters: a) 1, 2, 4; b) 6, 7, 8; c) 9, 10; d)
11, 12

genes (small biclusters were not dealt with). Thus, 10 biclusters were chosen in this
case: BC1, BC2, BC4, BC6 − BC12. Figure 5.18 shows the charts of the gen-
eral topological index versus the thresholding coefficient for the reconstructed gene
networks based on the obtained biclusters. The value of the thresholding coefficient
was changed within the range from 0.35 to 0.55 with a step 0.01. This range was de-
termined empirically during the simulation process. The values of the thresholding
coefficient within this range corresponded to the complete number of genes in the
reconstructed networks. The following values of the thresholding coefficients were
determined as the result of Figure 5.18 analysis: BC1, BC2 and BC7 - 0.51; BC4
and BC9 - 0.47; BC6 - 0.53; BC8 - 0.45; BC10 and BC11 - 0.5; BC12 - 0.48.

Table 5.2 presents the relative criteria values for reconstructed GRN which were
calculated by formulas (5.15) - (5.18). The chart of relative quality criterion calcu-
lated for GRN reconstructed based on the data in allocated biclusters is presented
in Figure 5.19. Horizontal line in Figure 5.19 is drawn at the level of the average
value of the relative validation criterion for the reconstructed gene networks. An
analysis of the obtained results allows concluding that the value for the specificity
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Table 5.2: Relative criteria for the reconstructed GRN based on correlation inference
algorithm

BC 1 2 4 6 7
Sp 99.57 99.92 99.95 98.29 99.77
Se 51.47 89.66 90.24 57.42 45.45
RC 120.71 1156.41 1746.99 33.66 195.43
BC 8 9 10 11 12
Sp 97.08 99.35 98.78 98.80 98.9
Se 61.76 85.34 67.36 54.86 52.51
RC 21.15 132.09 55.46 45.65 47.81

Figure 5.19: Chart of the relative quality validation criterion for GRN reconstructed
using correlation inference algorithm
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parameter is varied within the range from 97 to 100 percentages, indicating a low
percentage of incorrectly identified positive cases. The value of sensitivity in these
cases is varied from 45.5% for the gene network based on data of the seventh bi-
cluster to 90.2% for the network, reconstructed on the basis of data from the fourth
bicluster. The minimal value of the relative criterion corresponds to the gene net-
work reconstructed based on the data of eighth bicluster and it equals 21. In this
case, the maximal value of this criterion is equal 1746 for the GRN reconstructed
based on the data of fourth bicluster. The weighted average of relative validation
criterion for all reconstructed models is equal 355.5.

The obtained results indicate a high level of adequacy of the proposed technique
for the reconstruction of gene regulatory networks, since the values of relative valida-
tion criteria for all reconstructed gene networks are substantially larger than unity.
The number of incorrectly identified positive cases belongs to the interval from 0 to
3 percentages, and sensitivity values are less than 50% (45.5) only for the network
reconstructed based on the seventh bicluster. For the gene networks reconstructed
based on other biclusters, the value of this parameter is greater than 50%, and for
the fourth bicluster it reaches 90.2%.

5.6.2 Validation of the GRN Reconstructed based on ARACNE
Inference Algorithm

Figure 5.20 shows charts of the general topological index versus the threshold-
ing coefficient for the models of gene regulatory networks reconstructed applying
ARACNE inference algorithm using the data in obtained biclusters. Thresholding
coefficient value in this case was changed within the range from 0.03 to 0.2 with a
step 0.01. This range was also determined empirically. The value of the threshold-
ing coefficient in this range corresponded to the complete number of genes in the
reconstructed networks. The following values of the thresholding coefficient were
determined as a result of the obtained charts analysis: BC1, BC4, BC9 and BC12
- 0.13; BC2 - 0.06; BC6 - 0.19; BC7 - 0.07; BC8 - 0.17; BC10 - 0.14; BC11 -
0.09. Table 5.3 and Figure 5.21 present the relative criteria values for GRN re-
constructed using ARACNE inference algorithm and chart of the relative quality
criterion calculated for the reconstructed GRN respectively.

An analysis of the obtained results allows us to conclude that the level of ad-
equacy of the models of gene regulatory networks reconstructed using ARACNE
inference algorithm is significantly less in comparison with the gene networks, recon-
structed using correlation inference algorithm. So, in the case of applying ARACNE
inference algorithm, sensitivity and specificity values are varied within the ranges
from 34.3% to 72.5%, and from 95.1% to 99.2% respectively. The weighted average
of the relative validation criterion for the models of gene networks reconstructed
based on the ARACNE algorithm is equal to 25.24, that significantly less than the
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Figure 5.20: Charts of the general topological index versus the value of the threshold-
ing coefficient for gene regulatory networks reconstructed using ARACNE inference
algorithm based on data from biclusters: a) 1, 2, 4; b) 6, 7, 8; c) 9, 10; d) 11, 12

Table 5.3: Relative criteria for GRN reconstructed based on ARACNE inference
algorithm

BC 1 2 4 6 7
Sp 97.58 95.72 98.86 98.02 96.82
Se 44.55 38.45 72.5 53.00 34.29
RC 18.39 8.98 63.54 26.81 10.78
BC 8 9 10 11 12
Sp 95.11 98.37 99.19 96.59 97.65
Se 48.32 60.00 39.09 46.82 50.26
RC 9.87 36.71 48.54 13.72 21.36
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Figure 5.21: Chart of the relative quality validation criterion for GRN reconstructed
using ARACNE inference algorithm

corresponding value when applying the correlation inference algorithm. This fact
indicates a higher effectiveness of the correlation inference algorithm in comparison
with ARACNE algorithm in terms of the used quantitative quality criteria.

5.7 Conclusions
In this chapter, we have presented a techniques of both gene regulatory network
reconstruction and validation of the reconstructed models. The technique of GRN
reconstruction is presented as a structural block chart of stepwise procedure of de-
termination of the used inference algorithm optimal parameters considering the net-
work topological parameters. The optimal topolology of the network in this case
corresponded the maximum value of the general topological index which contained
the partial network topological parameters as the components. As the simulation
results, we have obtained the charts of both the simple topological parameters and
the general topological index versus the value of a thresholding coefficient, which
determines the network topology. The simulation process was carried out using both
correlation and ARACNE inference algorithms based on Cytoscape software. The
values of the thresholding coefficient were 0.49 and 0.33 in the cases of the use of
correlation and ARACNE inference algorithms respectively. In these cases the value
of the general topological index achieves maximal ones and networks contained 147
of genes from 147.

A technique of the reconstructed gene regulatory network validation is based on
ROC analysis, implementation of which assumes a comparative analysis of the char-
acter of relations between relevant genes in the basic network and in the networks
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reconstructed based on data in the obtained biclusters with calculation of errors
of both the first and second types. The relative validation quality criterion has
been proposed as the main criterion to evaluate the adequacy of the reconstructed
network. This criterion was calculated as the ratio of sensitivity of the model in
percentage to the percentage of false positive cases. A larger value of this criterion
corresponds to a higher level of adequacy of the networks reconstructed based on
biclusters to basic network. It has been shown that when applying the correlation
inference algorithm, the value of specificity parameter is varied within the range
from 97 to 100 percentages, indicating a low percentage of incorrectly identified pos-
itive cases. The value of sensitivity in this case was varied from 45.5% for the gene
network based on data from the seventh bicluster, to 90.2% for the network, recon-
structed on the basis of data from the fourth bicluster. Minimal value of a relative
validation criterion corresponded to the gene network based on the eighth bicluster
and this value was equal 21. In this case, the maximal value of this criterion of 1746
matched the fourth bicluster. The weighted average of relative validation criterion
for the reconstructed models was equal 355.5. When employing ARACNE inference
algorithm, the sensitivity was varied within the range from 34.3% to 72.5%, and the
specificity was varied from 95.1% to 99.2%. The weighted average of relative valida-
tion criteria for the models of gene networks reconstructed based on the ARACNE
inference algorithm was equal 25.24, what is significantly less in comparison with
the use of correlation inference algorithm.

Thus, it can be concluded, that in the terms of existence or absence of the links
between relevant genes in the basic network and networks reconstructed based on
the biclusters, the gene regulatory network reconstructed using correlation inference
algorithm has higher level of adequacy in comparison with gene networks recon-
structed using ARACNE inference algorithm. However, the comparison analysis
of the charts of distributed network topological parameters have shown the higher
level of structuredness of gene networks, reconstructed based on ARACNE inference
algorithm in comparison with the use on correlation inference algorithm, since the
number of genes with high degree is not so much, the values of the topological co-
efficient, number of shared neighbours and average of neighbours connectivity are
decreased monotonically during the number of neighbours increase. Moreover, the
comparison of the obtained charts with appropriate charts for other reconstructed
valid gene networks shows high level of their similarity. This fact also allows con-
cluding about the corectnesss of the proposed technique. The obtained results allow
us to conclude too that the final decision concerning level of the gene regulatory
network adequacy can be done for the further simulation process.
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