Коробова И. В. Технологии формирования методической компетентности будущих учителей физики в контексте праксеологического похода[Текст] / И. В. Коробова // Вестник Алтайской государственной педагогической академии, 2014. – № 19. – С. 50-57.

УДК: 371.31

И.В. Коробова

ТЕХНОЛОГИИ ФОРМИРОВАНИЯ МЕТОДИЧЕСКОЙ КОМПЕТЕНТНОСТИ БУДУЩИХ УЧИТЕЛЕЙ ФИЗИКИ В КОНТЕКСТЕ ПРАКСЕОЛОГИЧЕСКОГО ПОДХОДА

Переход к компетентностной парадигме в профессиональном образовании предусматривает разработку и применение новых педагогических технологий, которые бы обеспечивали постепенное, последовательное овладение студентом будущей профессией не только теоретически, но и на исполнительском и рефлексивном уровнях. Представление педагогической технологии с позиции праксеологического подхода, а также использование в качестве психологической основы теории П.Я. Гальперина позволяет это сделать. Учитывая это, проблема разработки технологий приобретения компетентностного методического опыта студентами — будущими учителями в период обучения в педагогическом вузе представляется актуальной.

Целью статьи является обоснование и презентация технологий поэтапного формирования методической компетентности (ТПФМК) будущих учителей физики с позиции праксеологического подхода.

Образовательные педагогические технологии стали предметом научных исследований ряда ученых (В.П. Беспалько [1], Л.Ю. Благодаренко [2], М.В. Кларин [3]. В.М. Монахов [4], Г.К. Селевко [5] и т.д.). Сущность понятия «технология» (от грец. techne – искусство и logos - слово, учение) в контексте его использования в образовательном процессе разными авторами трактуется по-разному. В частности, имеют место следующие определения педагогической технологии: содержательная техника реализации учебного процесса (В.П. Беспалько); описание процесса достижения запланированных результатов обучения (И.П. Волков); системный метод создания, применения и определения всего процесса преподавания и усвоения знаний с учетом технических и человеческих ресурсов и их взаимодействия, ставящий своей задачей оптимизацию форм образования (ЮНЕСКО); системная совокупность и порядок функционирования всех личностных, инструментальных и методологических средств, используемых для достижения педагогических целей (М.В. Кларин); продуманная во всех деталях модель совместной педагогической деятельности по проектированию, организации и проведению учебного процесса с безусловным обеспечением комфортных условий для учеников и учителя (В.М. Монахов) [5].

Как видно из приведенных определений, термин «технология», пришедший в педагогику из производства, преимущественно толкуется в двух смыслах: широком и узком. В широком смысле технология понимается как сфера целенаправленных усилий, как объем знаний, необходимых для определенного производства, содержащий всестороннее описание производственного процесса, то есть, как системное процедурное знание. В узком смысле технологию можно понимать как производственный процесс (совокупность правил, приемов, последовательность операций и процедур, режим работы — которые обеспечивают реализацию процедурных знаний).

- Г.К. Селевко на основе анализа содержания понятия «педагогическая технология» выделяет следующие три ее аспекта:
- 1) *научный* как часть педагогической науки, которая изучает и разрабатывает цели, содержание и методы обучения и проектирует педагогические процессы;
- 2) процессуально-описательный как описание (алгоритм) процесса, совокупность целей, содержания, методов и средств для достижения запланированных результатов обучения;

3) *процессуально-действенный* – как осуществление технологического (педагогического) процесса, функционирование всех личностных, инструментальных и методологических педагогических средств [5, с.15-16].

По мнению Л.Ю. Благодаренко, наиболее точно сущность понятия «технология» отображает процессуальный (алгоритмический) подход, поскольку он может быть применен как к любому педагогическому процессу, так и к отдельным составным частям этого процесса [2]. Второй и третий аспекты (по Г.К. Селевко) и процессуальный подход к понятия «технология» (по Л.Ю. Благодаренко) отражают толкованию праксеологическое содержание данного понятия. В нашем исследовании за основу взято определение педагогической технологии с позиции праксеологического подхода, а именно: «педагогическая технология - освоенная в практике профессионального содружества последовательность методов, разворачивающая педагогический процесс во времени от момента выдвижения цели до получения и оценки результата» [6, с.164].

В.М. Монахов выделяет два основных момента, отличающих технологию от методики обучения – это гарантированность конечного результата и проектирование будущего учебного процесса [7]. С этой мыслью мы не можем согласиться, поскольку методика также обеспечивает гарантированность конечного результата, а стратегический уровень ее применения предусматривает проектирование учебного процесса. Опрос учителей физики на курсах повышения квалификации показал, что при попытке растолковать содержание понятий «технология» и «методика» у большинства учителей наблюдается их «наложение» и даже отождествление. И этот факт также имеет под собой определенное основание. В частности, даже в словаре [8], к которому мы обратились, понятия «технология» и «методика» представлены как синонимы. По нашему мнению, дело заключается еще в том, что технология обучения, реализуемая определенным учителем в конкретных условиях. приобретает субъективные признаки методики. Методика же, учитывая конкретные условия выступает в качестве механизма реализации технологии. В пределах развертывания реального педагогического процесса методика технологична, а технология имеет методическую окраску. Следовательно, возникает необходимость в разведении понятий «технология» и «методика» с позиции праксеологического подхода. Результат проведенного нами сравнительного анализа праксических особенностей методики и технологии обучения представлен в таблице 1:

Таблица 1

Сравнение особенностей технологии и методики в контексте праксеологического подхода

Технология обучения	Методика обучения	
Общие признаки		
Алгоритмичность построения учебного	Алгоритмичность построения учебного	
процесса	процесса	
Прогнозируемость желаемого результата	Прогнозируемость желаемого результата	
Отличительные признаки		
Объективность (обобщенное	Субъективность (субъективное,	
объективированное процедурное знание)	ованное процедурное знание) личностное процедурное знание)	
Всеобщность (воспроизводимость в	Единичность (определяется конкретными	
любой ситуации)	условиями организации учебного	
	процесса: учебное заведение, профиль	
	обучения, имеющиеся средства обучения и	
	т.п.)	
Типичность (независимость от личности	Индивидуальность (зависимость от	
учителя)	личности учителя)	
Инвариантность - независимость от	Вариативность - зависимость от	
особенностей учеников конкретного	особенностей учащихся конкретного	

класса (возраст, пол, количество	класса (возраст, пол, количество учеников	
учеников в группе и т.п.)	в группе и т.п.)	
Уровень обобщенности действий –	Уровень конкретизации действий –	
«задание последовательности действий	«инструмент технологической цепочки	
универсальных механизмов запуска и	действий, конкретизирующий воплощение	
реализации образовательного процесса	технологических законов для	
определенного типа, которые	определенной ситуации, на уровне	
обеспечивают его результативность с	реального процесса или деятельности» [6,	
учетом объективно возможных	c.161]	
параметров» [6, с.161]		

Анализ таблицы показывает, что с позиции педагогической праксеологии методика субъективна, своеобразна, вариативна, имеет статус конкретности – она зависит от:

- 1) субъективных условий обучения: особенностей учителя (один учитель лучше владеет групповыми методами обучения, другой отдает предпочтение фронтальной самостоятельной работе учащихся, у третьего лучше выходит организация процесса объяснения учителем и т.п.); индивидуальных особенностей учеников конкретного класса, в котором проводится урок физики;
- 2) объективных условий обучения: места и времени проведения урока; имеющихся средств обучения; организационных форм обучения и т.п.

В свою очередь, технология представляет собой объективированное, инвариантное процедурное знание (учитывает только объективные параметры учебного процесса) о пути достижения запланированного результата; отражает типичную последовательность методических действий в зависимости от поставленной цели. Именно поэтому главной отличительной чертой технологии является ее воспроизводимость в любых условиях.

Как отмечают И.А. Колесникова, Е.В. Титова, «в современном понимании образовательных технологий выделяются следующие смысловые акценты, важные в праксеологическом отношении:

- 1) возможность прогнозируемого получения заданных свойств и измерений предмета педагогического труда;
- 2) возможность нормирования способов педагогической деятельности;
- 3) возможность обеспечения системности и цикличности педагогических действий;
- 4) возможность построения логической последовательности педагогических действий и операций, обеспечивающих производительность образовательного процесса;
- 5) возможность приведения профессиональных действий в соответствие с закономерностями развития человека и педагогических процессов;
- 6) возможность руководить педагогическими процессами на основе программирования, алгоритмизации, теории информации, кибернетики;
- 7) воспроизводимость профессиональных действий, позволяющая транслировать продуктивный опыт.

Действенность технологии как педагогической процедуры ... основана на свойстве, которое можно обозначить как *технологичность* или *способность производить* запланированные изменения» [6, с.159-160]. «Технологичность специалиста проявляется в его умении осознанно выстроить логическую последовательность шагов на пути к цели и этапов решения конкретных задач, сформулированных на языке педагогических действий» [6, с.161].

Для построения конкретной педагогической технологии необходимо выяснить ее структуру. Поскольку мы определили педагогическую технологию как последовательность методов, разворачивающую педагогический процесс во времени, то ее структуру можно представить в виде системы методических действий, образующих цепочку технологических шагов, логически связанных между собой (рис.1).

Технологическая цепочка системы методических действий

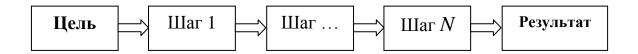


Рис. 1. Праксеологическая модель педагогической технологии

Далее необходимо раскрыть структуру технологического шага, являющегося «единицей технологического процесса». По определению И.А. Колесниковой, Е.В. Титовой, «технологический шаг - это профессиональное действие, вызывающее ожидаемую динамику педагогической системы в заранее известном диапазоне» [6, с.163]. Структура определенного таким образом технологического шага представлена на рисунке 2.

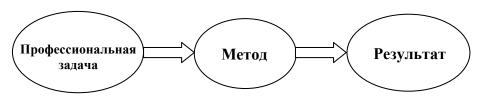


Рис. 2. Структура технологического шага

Таким образом, с позиции праксеологического подхода педагогическая технология проявляется в огромном количестве ипостасей, а именно, как: точное знание о профессиональном умении; воплощение принципа технологичности; форма упорядочивания педагогических процессов; профессиональный язык, используемый для нормирования описания действий и операций, которые осуществляются в педагогической реальности [9].

Опираясь на праксеологическую структуру педагогической технологии и модель методической деятельности учителя, в состав которой входят три компонента (они же – виды, уровни деятельности) — проектировочный, исполнительский и рефлексивный, целесообразно, на наш взгляд, разработать технологии формирования каждого названного вида методической деятельности.

Наиболее приемлемой психологической основой для построения таких технологий, с нашей точки зрения, является теория поэтапного формирования умственных действий (ТПФРД), разработанная П.Я. Гальпериным [10]), поскольку она наиболее технологична. На основе данной теории учеными-методистами (В.И. Ваганова) предложена схема этапов формирования методических действий-инвариантов [11, с.26], а также разработано их содержательное наполнение.

Процесс овладения отдельными видами методической деятельности, согласно ТПФРД, должен проходить последовательно шесть этапов: мотивационный, ориентировочный (показ образца действия), ориентировочный (изучение предоставленной или создание собственной ориентировочной основы действия — ООД), материализованный, внешнеречевой и внутриречевой (рефлексивный). Как видно из сопоставления, этапы формирования методических действий-инвариантов, предложенные В.И. Вагановой, соотвествуют этапам теории П.Я. Гальперина.

По нашему мнению, практическая реализация данной технологии в полном объеме возможна лишь на заключительном этапе формирования методической компетентности будущих учителей в период обучения в вузе. Это связано с тем, что она носит обобщенный характер: в единой технологической цепочке соединены все уровни методической

деятельности – от проектирования урока до его проведения и самоанализа. Многолетний опыт работы со студентами – будущими учителями физики дает основание утверждать, что самостоятельная разработка конспекта урока, проведение урока по этому конспекту и его самоанализ возможны лишь В процессе реальной методической деятельности также занятиях специально организованных (педагогическая практика), a на компетентностно-ориентированных спецкурсов (в частности, спецкурса «Основы методической деятельности учителя физики», преподаваемого нами в течение четырех лет в Херсонском государственном университете). Мы убеждены, что на этапах учебнометодической и квазиметодической деятельности должны «работать» отдельные технологии, студентами определенным уровнем методической приспособленные к овладению деятельности (проектировочным, исполнительским, рефлексивным). Конечным результатом учебно-методической деятельности студента должно быть *умение проектировать* (календарный план, конспект урока); квазиметодической - умение проводить миниурок и делать его самоанализ, причем, рефлексией (внутриречевой этап) должно заканчиваться как проектирование, так и проведение урока.

По мнению В.И. Вагановой, микропреподавание - создание маломасштабной ситуации со всеми компонентами преподавательской деятельности [11]. В нашем понимании микропреподавание реализуется через проведение миниурока как единичного целостного акта реального учебного процесса (длительностью 15-20 минут). Такой миниурок отличается от фрагмента урока тем, что имеет все структурные элементы полноценного урока. Проектирование и реализация на практике (в лабораторных условиях) миниурока требует от будущего учителя выполнения последовательности всех методических действий, которые полноценно обеспечивают реализацию всех педагогических функций учителя.

Сокращение урока во времени позволяет:

- А) *стиудентку*: сократить время на подготовку и проведение урока; многократно воссоздавать последовательность методических действий, которая должна приводить к формированию соответствующих методических умений, а в дальнейшем и методической компетентности в организации и проведении единичного целостного акта методической деятельности урока; провести самоанализ и самооценивание методической деятельности, сравнить свою деятельность с деятельностью других студентов;
- Б) *преподавателю*: проанализировать в течение занятия два-три однотипных миниурока, проведенных разными студентами, сравнить их в процессе анализа; привлечь к проведению и анализу уроков как можно больше студентов.

С нашей точки зрения, на начальных этапах изучения специальных дисциплин студенты должны научиться проектировать конспект (сценарий) урока и делать самоанализ его качества. По мнению ученых, для формирования умений целесообразно распределить процесс овладения методическими действиями во времени — на протяжении всего семестра: «необходимо, чтобы с разными аспектами усваиваемого действия студент встретился в семестре не менее 6-7 раз, а формируемый прием использовался студентом не меньше, чем в половине заданий семестра (Г.В. Никитина, В.Н. Романенко) [цит. по 11, с.27].

Это возможно осуществить, если применять единые требования ко всем предметам методического цикла. Учитывая это, целесообразно на практических занятиях по методике преподавания физики, а также другим специальным дисциплинам периодически организовывать обучение проектированию урока по следующей технологии, представленной в таблице 2.

Технология формирования проектировочной компетентности будущих учителей физики

будущих учителей физики			
Этапы формирования проектировочной компетентности (технологические шаги)	Содержание деятельности студента	Методические действия преподавателя	
Шаг 1 Мотивационный	Мотивация действия. Пересмотр видеоурока, выделение основных его частей; показ конечного результата - эталонного образца проекта (конспекта) данного урока	Организация мотивации - какую роль играют проектировочные действия в процессе обучения учащихся физике; актуализация теоретических положений, необходимых для достижения конечного результата	
Шаг 2 Ориентировочный (Показ образца действия)	Изучение образца действия - методом коллективной разработки конспекта урока (или его части)	Инструктирование и показ образца действия; повторное комментированное выполнение действия преподавателем; ориентация студентов на выполнение характерных операций	
Шаг 3 Ориентировочный (Создание ориентировочной основы действия - ООД)	Изучение образцов (самостоятельное конструирование) технологических карт, обобщенных планов, структурно-логических схем, этапов проведения урока и т.п.	Обеспечение студента системой ориентиров и указаний (памяток, образцов оформления и т.п.), учет которых необходим для разработки проекта (конспекта) урока	
Шаг 4 Материальный	Самостоятельное выполнение проектировочного действия на основе разработанной ООД; подготовка презентации разработанного проекта	Организация и контроль за самостоятельным выполнением проектировочного действия студентом	
Шаг 5 Внешнеречевой	Презентация конспекта урока с обоснованием его построения и сравнение его с эталоном (образцом)	Организация самостоятельной подготовки и презентации студентом разработанного продукта (конспекта); предоставление индивидуальных методических рекомендаций	
Шаг 6 Рефлексия (внутриречевой)	Коллективный анализ и самоанализ проекта (конспекта) урока; выявление и обсуждение методических ошибок, внесение коррективов	Предоставление студентам образцов (схем) аспектного и полного анализа конспекта урока, критериев его оценивания; организация коллективного обсуждения и самоанализа презентуемого продукта (конспекта)	

Отметим, что процесс рефлексии (анализа и самоанализа методической деятельности) имеет большое значение, поскольку лишь в этом случае возможно сформировать компетентностный опыт как по проектированию урока, так и по его проведению [12].

Опираясь на данное положение, процесс рефлексии необходимо рассматривать не только как этап технологии, но и как отдельную технологию приобретения рефлексивного опыта будущего учителя физики (табл. 3).

Таблица 3
Технология формирования рефлексивной компетентности
булущих учителей физики

будущих учителей физики		
Этапы формирования проектировочной компетентности (технологические шаги)	Содержание деятельности студента	Методические действия преподавателя
Шаг 1 Мотивационный	Мотивация действия. Просмотр видеоурока, его анализ, выделение алгоритма анализа; показ конечного результата - эталонного образца анализа данного урока	Организация мотивации - какую роль играет рефлексия учителя в учебнмом процессе; актуализация теоретических положений, необходимых для достижения конечного результата
Шаг 2 Ориентировочный (Показ образца действия)	Наблюдение образца действия - методом коллективного анализа посещенного (просмотренного) урока или его части	Инструктирование и показ образца действия - процедуры анализа урока; повторный комментированный анализ действия преподавателем; ориентация студентов на выполнение характерных рефлексивных операций
Шаг 3 Ориентировочный (Создание ориентировочной основы действия - ООД)	Изучение образцов методических действий (схем анализа и самоанализа)	Обеспечение студента системой ориентиров и указаний (памяток, схем аспектного и полного анализа и самоанализа), необходимых для осуществления анализа и самоанализа урока
Шаг 4 Материальный	Самостоятельное проведение анализа и самоанализа урока на основе разработанной ООД	Предоставление студентам образцов (схем) аспектного и полного анализа конспекта урока, критериев его оценивания; организация и контроль за проведением анализа и самоанализа методических действий студентом
Шаг 5 Внешнеречевой	Презентация самоанализа урока с его обоснованием	Организация самостоятельной работы над самоанализом урока и последующей презентации студентом; предоставление индивидуальных методических рекомендаций
Шаг 6 Рефлексия (внутриречевой)	Коллективное обсуждение самоанализа проведенного урока; внесение коррективов	Организация коллективного обсуждения презентуемого продукта и его корректировка

Отметим, что на 4-5 курсах обучения параллельно с формированием проектировочной и рефлексивной компетентности необходимо формировать исполнительскую методическую компетентность будущих учителей физики, начиная этот процесс с проведения уроков (миниуроков) по готовым конспектам (предоставленным студентам в готовом виде, случае заблаговременно отобранным преподавателем). В ЭТОМ студент сконцентрирован именно на исполнительской деятельности (поскольку будет уверен в высоком качестве предлагаемого конспекта). В процессе анализа проведенного урока возникает возможность избавиться от лишних в данном случае элементов, которые касаются структуры и содержательного наполнения урока, а сосредоточиться на анализе процедурных аспектов урока (информационном, коммуникативном, организационно-управленческом, контрольно-оценочном).

Таким образом, применение технологий поэтапного формирования методической компетентности (ТП Φ МК) – проектировочной, исполнительской, рефлексивной – позволяет постепенно продвигать студента по ступенькам овладения профессией учителя физики по схеме: «проектирование \rightarrow рефлексия \rightarrow выполнение \rightarrow рефлексия», в результате чего будущий учитель приобретает компетентностный опыт методической деятельности.

Исследование следует продолжить в направлении разработки методического обеспечения каждого шага технологии.

Библиографический список:

- 1. Беспалько В. П. Слагаемые педагогической технологии / В. П. Беспалько. М. : Педагогика, 1989. 302 с.
- 2. Благодаренко Л. Ю. Технології особистісно-орієнтованого навчання фізики: Навчально-методичний посібник / Л. Ю. Благодаренко. К. : НПУ, 2005. 112 с.
- 3. Кларин М. В. Педагогическая технология в учебном процессе. Анализ зарубежного опыта / М. В. Кларин. М. : Знание, 1989. 80 с. (Новое в жизни, науке, технике. Сер. «Педагогика и психология»; № 6)
- 4. Монахов В. М. Аксиоматический подход к проектированию педагогической технологии / В. М. Монахов // Педагогика. -1997. -№ 6. C. 26-31.
- 5. Селевко Γ . К. Современные образовательные технологи: [учеб. пособие] / Γ . К. Селевко. М. : Народное образование, 1998. 256 с.
- 6. Колесникова И. А. Педагогическая праксеология / И. А. Колесникова, Е. В. Титова. М. : Издат. центр «Академия», 2005. 256 с.
- 7. Воловикова М. Л. Понятие «педагогическая технология» в современной педагогике / М. Л. Воловикова [Электронный ресурс]. Режим доступа : http://rspu.edu.ru/university/publish/journal/lexicography/conference/volovikova.htm (Дата обращения: 24.07.2013)
- 8. Словарь русских синонимов: технология [Электронный ресурс]. Режим доступа http://dic.academic.ru/dic.nsf/dic synonims/177909/технология (Дата обращения: 24.07.2013)
- 9. Колесникова И. А. Основы технологической культуры педагога, научно-методическое пособие для системы повышения квалификации издательство. / И. А. Колесникова. СПб. : «Дрофа», 2003. 288 с.
- 10. Гальперин П. Я. Лекции по психологии: Учеб. пособие для студентов вузов / П. Я. Гальперин. М. : Книжный дом «Университет» : Высшая школа, 2002.-400 с.
- 12. Хуторской А. В. Компетентность как дидактическое понятие: содержание, структура и модели конструирования / А. В. Хуторской, Л. Н. Хуторская // Проектирование и организация самостоятельной работы студентов в контексте компетентностного подхода: Межвузовский сб. науч. тр. / Под ред. А. А. Орлова. Тула: Изд-во Тул. гос. пед. ун-та им. Л. Н. Толстого, 2008. Вып. 1. С.117-137.

Поступила в редакцию: 02.06.2014 г.