Repository logo
Communities & Collections
All of DSpace
  • English
  • Українська
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Savchenko, O. G."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    МОДЕЛЮВАННЯ ВЗАЄМНОГО РОЗМІЩЕННЯ ТОЧОК МЕТРИЧНОГО ПРОСТОРУ
    (2021) Валько, К. В.; Кузьмич, В. І.; Кузьмич, Л. В.; Савченко, О. Г.; Валько, Е. В.; Кузьмич, В. И.; Кузьмич, Л. В.; Савченко, А. Г.; Valko, A. G.; Kuz’mich, V. I.; Kuzmich, L. V.; Savchenko, O. G.
    Робота присвячена побудові математичної моделі зображення геометричних образів у метричних просторах за допомогою основних понять метричної геометрії. Головною особливістю цієї геометрії є можливість використання лише однієї характеристики, що встановлюється між точками метричного простору, – відстані між ними. Це накладає на дослідження з метричної геометрії значні обмеження та збільшує складність аналітичних співвідношень між її основними геометричними образами – прямолінійним розміщенням точок, плоским розміщенням точок, кутом і його числовою характеристикою. Образи класичних геометричних фігур евклідової геометрії – трикутник, тетраедр і таке інше можуть мати достатньо незвичні форми та властивості у метричній геометрії. Значною перевагою цієї геометрії є достатньо високий рівень загальності, який дозволяє з однієї точки зору розглядати як класичну геометрію Евкліда, так і неевклідові геометрії. Швидкий розвиток метричної геометрії у наш час зумовлений численними її застосуваннями у різних галузях науки та інженерії. Складність аналітичних перетворень частково компенсується можливістю застосування до них сучасних засобів обчислювальної техніки та комп’ютерної візуалізації геометричних образів. Однією із перепон до використання комп’ютерної візуалізації є необхідність використання формул перерахунку відстаней між точками метричного простору у декартові координати цих точок. Сучасні програмні засоби для зображення геометричних образів використовують, в основному, задані координати точок, що утруднює геометричну інтерпретацію цих образів та їх перетворення. У роботі пропонуються формули переходу від значень відстані між точками метричного простору до їх декартових координат у випадку геометричного образу тетраедра. Цей образ відіграє значну роль у встановленні фактів прямолінійного та плоского розміщення точок простору і дає можливість візуалізації впливу метрики простору на його геометричні властивості. Програмне забезпечення результатів роботи використовує як стандартні обчислювальні засоби та засоби візуалізації (електронні таблиці Excel, динамічне геометричне середовище GeoGebra 3D), так і окремі комп’ютерні застосунки для обчислення об’єму тетраедра за довжинами його ребер. Работа посвящена построению математической модели изображения геометрических образов в метрических пространствах с помощью основных понятий метрической геометрии. Главной особенностью этой геометрии является возможность использования только одной характеристики, которая устанавливается между точками метрической пространства, – расстояния между ними. Это накладывает на исследования по метрической геометрии значительные ограничения и увеличивает сложность аналитических соотношений между ее основными геометрическими образами – прямолинейного расположения точек, плоского размещения точек, угла и его числовой характеристики. Образы классических геометрических фигур евклидовой геометрии – треугольник, тетраэдр и т.д. могут иметь достаточно необычные формы и свойства в метрической геометрии. Значительным преимуществом этой геометрии является высокий уровень общности, который позволяет с одной точки зрения рассматривать как классическую геометрию Евклида, так и неевклидовы геометрии. Быстрое развитие метрической геометрии в наше время обусловлено многочисленными ее приложениями в различных областях науки и инженерии. Сложность аналитических преобразований. частично компенсируется возможностью применения к ним современных средств вычислительной техники и компьютерной визуализации геометрических образов. Одной из преград к использованию компьютерной визуализации является необходимость использовать формулы пересчёта расстояний между точками метрического пространства в декартовы координаты этих точек. Современные программные средства изображения геометрических образов используют, в основном, заданные координаты точек, что затрудняет геометрическую интерпретацию этих образов и их преобразования. В работе предлагаются формулы перехода от значений расстояния между точками метрической пространства к их декартовым координатам в случае геометрического образа тетраэдра. Этот образ играет значительную роль в установлении фактов прямолинейного и плоского размещения точек пространства, и дает возможность визуализации влияния метрики пространства на его геометрические свойства. Программное обеспечение результатов работы использует как стандартные вычислительные средства и средства визуализации (электронные таблицы Excel, динамическую геометрическую среду GeoGebra 3D), так и отдельные компьютерные приложения для вычисления объема тетраэдра по длинам его ребер. The work is devoted to the construction of a mathematical model of the image of geometric images in metric spaces using the basic concepts of metric geometry. The main feature of this geometry is the ability to use only one characteristic that is established between the points of the metric space - the distance between them. This imposes significant limitations on the study of metric geometry, and increases the complexity of analytical relationships between its basic geometric images - rectilinear placement of points, flat placement of points, angle and its numerical characteristics. Images of classical geometric figures of Euclidean geometry - a triangle, tetrahedron and so on, can have quite unusual shapes and properties in metric geometry. A significant advantage of this geometry is a significant level of generality, which allows from one point of view to consider both classical Euclidean geometry and non-Euclidean geometries. The significant development of metric geometry in our time is due to its numerous applications in various fields of science and engineering. The complexity of analytical transformations is partially offset by the possibility of applying modern computer technology and computer visualization of geometric images. One of the obstacles to the use of computer visualization is the need to use formulas for calculating the distances between points of a metric space in the Cartesian coordinates of these points. Modern software for displaying geometric images uses mainly the specified coordinates of points. This makes it difficult to geometrically interpret these images and transform them. The paper proposes formulas for the transition from the values of the distance between the points of the metric space to their Cartesian coordinates in the case of a geometric image of a tetrahedron. This image plays a significant role in establishing the facts of rectilinear and flat placement of points in space and makes it possible to visualize the influence the metric of space on its geometric properties. The results software uses both standard computing and visualization tools (Excel spreadsheets, GeoGebra 3D dynamic geometric environment) and individual computer applications to calculate the volume of a tetrahedron by the lengths of its edges.
  • No Thumbnail Available
    Item
    МОДЕЛЮВАННЯ ПРЯМОЛІНІЙНОГО ТА ПЛОСКОГО РОЗМІЩЕННЯ ТОЧОК МЕТРИЧНОГО ПРОСТОРУ
    (2020) Кузьмич, В. І.; Кузьмич, Л. В.; Савченко, О. Г.; Кузьмич, В. И.; Савченко, А. Г.; Kuz’mich, V. I.; Kuz’mich, L.V.; Savchenko, O. G.
    У роботі розглядаються питання геометричної структуризації множин точок довільного метричного простору. Запропоновані методи побудови прямолінійно і плоско розміщених множин точок метричного простору. Такі множини є узагальненням понять, відповідно, прямої лінії і площини у класичній геометрії Евкліда. Побудова таких множин точок дає можливість моделювати різні геометричні образи у метричних просторах. Поняття прямолінійного розміщення точок базується на класичному понятті «лежати між», що широко використовується у сучасних геометричних системах. У роботі використовуються поняття кута, утвореного трьома точками метричного простору, та поняття кутової характеристики цього кута. Ці поняття є базовими для визначення плоского розміщення точок метричного простору. Крім того, факт прямолінійного розміщення точок можна отримати, також, з використанням понять кута та його кутової характеристики. Для встановлення факту плоского розміщення точок метричного простору використовується формула Юнгіуса обчислення об’єму тетраедра через довжину його бічних ребер. Умова рівності нулю цього об’єму є ознакою плоского розміщення чотирьох вершин тетраедра. У роботі використовується модифікована формула Юнгіуса, в якій об’єм тетраедра обчислюється через довжини трьох його ребер, що виходять з однієї вершини, та косинуси плоских кутів при цій вершині. Оскільки такі обчислення досить трудомісткі, то в роботі пропонується проводити їх із використанням програмного засобу «Калькулятор». За допомогою цього калькулятора можна встановити: чи існує тетраедр із заданими ребрами, і якщо так, то обчислити об’єм такого тетраедра. У роботі наведені приклади прямолінійно та плоско розміщених множин точок у різних класичних метричних просторах. Зокрема, розглянуті приклади таких множин у просторі неперервних на відрізку функцій та у просторі інтегрованих за Ріманом на відрізку функцій. Деякі приклади вказують на «неевклідовість» понять прямолінійного та плоского розміщення точок. Це дає змогу моделювати у метричних просторах основні поняття та властивості неевклідових геометрій. В работе рассматриваются вопросы геометрической структуризации множеств точек произвольного метрического пространства. Предложены методы построения прямолинейно и плоско расположенных множеств точек метрического пространства. Такие множества являются обобщением понятий, соответственно, прямой линии и плоскости в классической геометрии Евклида. Построение таких множеств точек дает возможность моделировать различные геометрические образы в метрических пространствах. Понятие прямолинейного размещения точек базируется на классическом понятии «лежать между», которое широко используется в современных геометрических системах. В работе используются понятие угла, образованного тремя точками метрической пространства, и понятие угловой характеристики этого угла. Эти понятия являются базовыми для определения плоского размещения точек метрического пространства. Кроме того, факт прямолинейного размещения точек можно получить, также, с использованием понятий угла и его угловой характеристики. Для установления факта плоского размещения точек метрического пространства используется формула Юнгиуса вычисления объема тетраэдра через длину его боковых ребер. Условие равенства нулю этого объема является признаком плоского размещения четырех вершин тетраэдра. В работе используется модифицированная формула Юнгиуса, в которой объем тетраэдра вычисляется через длины трех его ребер, выходящих из одной вершины, и косинусы плоских углов при этой вершине. Поскольку такие вычисления достаточно трудоемки, то в работе предлагается проводить их с использованием программного средства «Калькулятор». С помощью этого калькулятора можно установить: существует ли тетраэдр с заданными ребрами, и если да, то вычислить объем такого тетраэдра. В работе приведены примеры прямолинейно и плоско размещенных множеств точек в разных классических метрических пространствах. В частности, рассмотрены примеры таких множеств в пространстве непрерывных на отрезке функций и в пространстве интегрированных по Риману на отрезке функций. Некоторые примеры указывают на «неевклидовисть» понятий прямолинейного и плоского размещения точек. Это позволяет моделировать в метрических пространствах основные понятия и свойства неевклидовых геометрий. The paper deals with the issues of geometric structuring of sets of points of an arbitrary metric space. Methods for constructing rectilinear and flat sets of points of metric space are proposed. Such sets are a generalization of the concepts, respectively, of a straight line and a plane in the classical geometry Euclid. The construction of such sets of points makes it possible to model various geometric images in metric spaces. The concept of rectilinear placement of points is based on the classical concept of 'lie between', which is widely used in modern geometric systems. The work uses the concept of an angle formed by three points of the metric space, and the concept of the angular characteristic of this angle. These concepts are basic for the definition of a flat placement of points in a metric space. In addition, the fact of the rectilinear placement of points can also be obtained using the concepts of angle and its angular characteristic. For establish the fact that the points of the metric space are flat placement, the Jungius formula is used to calculate the volume of a tetrahedron in terms of the length of its lateral edges. The condition for this volume to be zero is a sign of the flat placement of the four vertices of the tetrahedron. The paper uses a modified Jungius formula, in which the volume of a tetrahedron is calculated in terms of the lengths of its three edges emerging from one vertex and the cosines of plane angles at this vertex. Since such calculations are rather laborious, it is proposed to carry out them using the 'Calculator' software tool. With the help of this calculator, you can determine whether there is a tetrahedron with given edges, and if so, calculate the volume of such a tetrahedron. The paper gives examples of rectilinear and flat placement sets of points in different classical metric spaces. In particular, examples of such sets are considered in the space of continuous functions on an segment and in the space of Riemann-integrated functions on an segment. Some examples point to the 'non-Euclidean' concepts of rectilinear and flat placement of points. This allows modeling the basic concepts and properties of non-Euclidean geometries in metric spaces.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback