Факультет психології, історії та соціології
Permanent URI for this collectionhttps://ekhsuir.kspu.edu/handle/123456789/248
Browse
2 results
Search Results
Item AUTOMATIC RESET OF KINETIC ENERGY IN CASE OF INEVITABLE COLLISION OF SHIPS(2023) Zinchenko, S.; Kyrychenko, K.; Grosheva, O.; Nosov, P.; Popovych, I. S.; Mamenko, P.; Попович, І. С.Considered issues of automatic reset of kinetic energy along the gradient in case of inevitable collision of ships. The target function of the fastest reset of kinetic energy is formed in the form of a scalar product of the gradient vector at the location of the vessel and the vector of the right parts of the mathematical model of the longitudinal and angular movement channels containing control. To form optimal controls, a nonlinear optimization procedure was used, taking into account control restrictions. The own ship's movement parameters (speed and course) used in the optimization procedure are measured by speed and course sensors, and the target's movement parameters are estimated from the measured values of the own ship's speed and course and the measured relative movement parameters using radar. The workability method was verified by mathematical modeling in a closed circuit with a control object. The results of the simulation showed that the automatic module provides a 9-fold reduction in the kinetic energy of the collision. The use of the automatic kinetic energy reset module in the event of an imminent collision will reduce the influence of the negative impact of decisions when handling a vessel under the influence of stress, reduce crew fatigue, prevent damage or even loss of the vessel and cargo, and save human lives.Item AUTOMATIC VESSEL STEERING IN A STORM(2022) Zinchenko, S.; Tovstokoryi, O.; Mateichuk, V.; Nosov, P.; Popovych, I. S.; Gritsuk, I.; Попович, І. С.The issues of automatic vessel control in a storm are considered in the paper. Vessel control in a storm is the most difficult stage in the vessel’s wiring, as it requires quick decisions to be made in difficult conditions. Practical experience shows that the deterioration of the working conditions of the crew is usually associated with an increase in the number of control errors, which is completely unacceptable in stormy conditions. To assess the safe speed and course in a storm, Yu. V. Remez has proposed a universal storm diagram, which allows identifying unfavourable combinations of vessel speed and course angles of the waves – the resonant zones, and avoid them. The universal Remez diagram provides for graphical calculations, which, in combination with the visual determination of the wave parameters, gives a very low accuracy. The article examines the possibility of automatic control of a vessel in a storm by automatic measurement of motion parameters and wave parameters, automatic calculation in the on-board controller of the vessel optimal safe speed and course during a storm, automatic maintenance of the optimal safe speed and course of the vessel. The automatic control significantly increases the accuracy of calculations, excludes the human factor, reduces the depletion of the crew, and increases the reliability of the vessel control in a storm. The efficiency and effectiveness of the method, algorithmic and software were tested on Imitation Modelling Stand in a closed loop with mathematical vessel models of the navigation simulator Navi Trainer 5000.