Факультет психології, історії та соціології

Permanent URI for this collectionhttps://ekhsuir.kspu.edu/handle/123456789/248

Browse

Search Results

Now showing 1 - 10 of 12
  • Item
    ANALYTICAL MODEL OF A SHIP’S STABILITY ON A REGULAR WAVE
    (2024) Zinchenko, S.; Tovstokoryi, O.; Kyrychenko, K.; Nosov, P.; Popovych, I. S.; Попович, І. С.
    One of the main dangers of sailing in storms is the change in the stability of ships due to waves, which in some cases can even lead to its overturning. Therefore, the task of constant control of the ship’s stability during the voyage is an urgent scientific and technical task. A systematic approach, analysis and synthesis, methods of mathematical analysis, integral calculus, and numerical modeling were used during the research. An analytical model was developed for calculating the restoring moment in the roll channel under regular waves, depending on the geo- metric dimensions of the ship’s hull, immersion parameters, ship motion parameters, and wave parameters. The obtained results di↵er from the known solutions in that they have an analytical form and can be used to assess stability in real time. The theoretical significance of the obtained results lies in the development of an analytical model for estimating sta- bility on regular excitation. The practical value of the obtained results consists in: checking the operability of the analytical model during a computational experiment and the possibility of its use in an on-board computer of an automated or automatic control system.
  • Item
    APPLICATION OF THE CONDITIONAL OPTIMIZATION METHOD IN THE PROBLEM OF VESSEL STORMY SAILING
    (2024) Zinchenkо, S.; Tovstokoryi, O.; Mateichuk, V.; Nosov, P.; Popovych, I. S.; Kyrychenko, K.; Попович, І. С.
    Stormy sailing conditions are among the most extreme and dangerous. The rocking of the ship in the roll and trim channels greatly exhausts the crew, which leads to an increase in the number of errors when making management decisions. The situation worsens also due to the fact that during a storm such dangerous phenomena as harmonic and parametric resonances, a decrease in stability on passing waves, broaching, impacts of group waves in the stern, which can lead to the , hull destruction, overloads of the power plant and occurrence of blackouts. The most radical way to combat such dangers is the automation of control processes. The authors have developed a method of automatic and optimal control of the ship's movement in storm conditions, which allows to avoid the occurrence and development of dangerous phenomena that lead to the capsize of the ship. The obtained result is explained by: the use of an on-board computer in the ship's motion control system; constant measurement of ship movement parameters and waves; finding, at each step of the on-board computer, safe and optimal values of the ship's course and speed by solving the optimization problem; taking into account when solving the optimization problem linear and non-linear constraints of the type of inequalities that define dangerous areas; maintaining safe and optimal movement parameters using the automatic control system. The theoretical significance of the obtained result lies in the development of a method of automatic and optimal control of the ship's movement in conditions of stormy sailing. The practical significance of the obtained results consists in: verification of the developed method by mathematical modeling; the possibility of using the method in the automatic control system, which allows to automate and optimize the processes of controlling a ship in a storm, reduce the influence of the human factor on control processes, crew fatigue, risks of losing the ship and cargo, and generally increase the safety of shipping
  • Item
    AUTOMATIC PREVENTION OF THE VESSEL’S PARAMETRIC ROLLING ON THE WAVE
    (2024) Kobets, V.; Zinchenko, S.; Tovstokoryi, O.; Nosov, P.; Popovych, I.; Попович, I.; Gritsuk, I.; Perederyi, V.
    Parametric resonance is one of the most dangerous phenomena that occurs during a storm. In the event of a parametric resonance, an undamaged and properly loaded vessel can capsize within seconds. The essence of parametric resonance is to change the parameters of the vessel as an oscillating system. In this case, the coefficients of the differential equations of the vessel model become functions of time. Parametric oscillations are observed at a certain ratio between the frequency of the external influence and the frequency of the system's own oscillations. Parametric resonance in the roll channel is especially dangerous, which leads to a sharp increase in the amplitude of the vessel's rolling, water entering the deck and inside the vessel's hull, loss of stability and possible capsizing. The existing methods of storming are not effective enough, which is due to the use of visual methods for estimating the parameters of turbulence and manual graphic constructions, significant time delays between obtaining data for calculation and determining safe parameters of motion, the lack of constant measurement of turbulence parameters and refinement of safe motion parameters, the difficulty of selecting the dominant factor from the system dangerous factors, intuitive assessment of the level of danger. The authors have developed a method of automatic avoidance of parametric resonance, which differs from existing methods in that it automates the processes of measurement and information processing, reduces delays in decision-making, reduces the influence of the human factor on control processes, reduces crew fatigue, reduces the risks of losing the vessel and cargo, and in general increases the navigation safety. The developed method can be used for both manual and automatic control. In the manual control mode, the shipmaster has the opportunity to use automatically measured information and the results of its processing - visualization of parametric resonance areas and the position of the phase point for making management decisions. In the automatic control mode, the system itself calculates and implements safe movement parameters, and the shipmaster only observes its operation. The obtained results are reproducible and can be used to develop the functionality of automated systems and/or automatic parametric resonance avoidance modules.
  • Item
    CONTROL OF THE PIVOT POINT POSITION OF A CONVENTIONAL SINGLE-SCREW VESSEL
    (2023) Kobets, V.; Popovych, I. S.; Zinchenko, S.; Tovstokoryi, O.; Nosov, P.; Kyrychenko, K.; Попович, І. С.
    The issues of using the pivot point concept for the control of a conventional single-screw vessel are considered. The relevance of the task lies in the need for a more accurate assessment of the vessel's trajectory and the necessary area for maneuvering, since conventional single-screw vessels have low maneuverability, and their share in the total number of vessels exceeds 85%. For manual maneuvering of the vessel, using the pivot point, it is important to know the position of the pivot point relative to a fixed point of the vessel’s hull. Traditionally, this point was the gravity center/middle frame of the vessel. The disadvantage of the existing approaches to the calculation of the pivot point position was the use of a simplified calculation scheme ”gravity center – pivot point”, which did not take into account the dependence of the pivot point position on the rotation center position. In previous works, the authors of this article proposed the “gravity center – rotation center – pivot point” calculation scheme, which made it possible to more accurately estimate the pivot point position, taking into account the position of the rotation center. In the refined scheme proposed by the author, the pivot point position was determined relative to the moving rotation center, which is not convenient for manual control. In this article, for a single-screw conventional vessel, a formula and graphs of pivot point position relative to a fixed point on the vessel’s hull (gravity center/middle frame) are obtained, for the refined calculation scheme “gravity center – rotation center – pivot point”. The obtained formulas and graphs of the pivot point position relative to a fix point (gravity center/middle frame) allow us to use them both for automatic and manual control of the vessel’s movement. Mathematical modeling of a single-screw conventional vessel movement in the closed circuit “Control object – Control system” was carried out for the two considered calculation schemes. The simulation results showed that the use of the refined calculation schem allows for a 23% more accurate assessment of the vessel’s trajectory and the required maneuvering area.
  • Item
    CONTROL OF THE PIVOT POINT POSITION OF A CONVENTIONAL SINGLE-SCREW VESSEL
    (2023) Zinchenko, S.; Kobets, V.; Tovstokoryi, O.; Kyrychenko, K.; Nosov, P.; Popovych, I. S.; Зінченко, С. М.; Кобець, В.; Товстокорий, О.; Кириченко, К. В.; Носов, П.; Попович, І. С.
    The article deals with the issue of reducing the maneuvering area of a conventional single-screw vessel due to the use, when determining controls, of the refined calculation scheme "gravity center – rotation center – pivot point".
  • Item
    INTELLIGENT SYSTEM CONTROL OF THE VESSEL EXECUTIVE DEVICES REDUNDANT STRUCTURE
    (2023) Zinchenko, S.; Kobets, V.; Tovstokoryi, O.; Nosov, P.; Popovych, I. S.; Попович, І. С.
    The article examines the issues of optimal control of vessels with redundant structures of executive devices on the example of an offshore vessel with two stern azimuth control devices (ACD) and a bow thruster. Known technical solutions for optimal control of redundant structures in the aviation, space, marine and other industries. The nearest technical solutions in the shipping are dynamic positioning systems (DP-systems) of manufacturers Navis, Marine Technologies, Rolls Royce, Transas, Consberg. The main purpose of such systems is to maintain the vessel in a given position with the help of active control during work (drilling, cable laying, cargo overloading, etc.). The main components of DP-systems are: sensors for measuring the absolute and relative position of the vessel (DGPS and Reference Systems), onboard computer with software and redundant structures of executive devices. Redundant structures in DP-systems are used to increase the reliability of the automated system. The article developed a method of using redundant structures also for optimization of control processes. The purpose of the work is to automate and optimize the processes of controling vessels with redundant structures of executive devices. On the example offshore vessel with two stern ACD and a bow thruster, optimal controls are considered that ensure: minimum energy consumption for performing DP operations, maximum control forces in the channels of longitudinal and lateral movement, which are used to move away from the platform in the presence of a downwind, as well as reconfiguration of redundant structures. The results of the experiment showed that the optimization of control processes allows to reduce energy consumption by (35–50) % and increase the control forces of the structure in the channels of longitudinal and lateral movement. At the same time, the additional load on the calculation cycle of the on-board controller, caused by the solution of optimization problems, is 25–50 ms, which is within (2.5–5) %.
  • Thumbnail Image
    Item
    AUTOMATIC VESSEL STEERING IN A STORM
    (2022) Zinchenko, S.; Tovstokoryi, O.; Mateichuk, V.; Nosov, P.; Popovych, I. S.; Gritsuk, I.; Попович, І. С.
    The issues of automatic vessel control in a storm are considered in the paper. Vessel control in a storm is the most difficult stage in the vessel’s wiring, as it requires quick decisions to be made in difficult conditions. Practical experience shows that the deterioration of the working conditions of the crew is usually associated with an increase in the number of control errors, which is completely unacceptable in stormy conditions. To assess the safe speed and course in a storm, Yu. V. Remez has proposed a universal storm diagram, which allows identifying unfavourable combinations of vessel speed and course angles of the waves – the resonant zones, and avoid them. The universal Remez diagram provides for graphical calculations, which, in combination with the visual determination of the wave parameters, gives a very low accuracy. The article examines the possibility of automatic control of a vessel in a storm by automatic measurement of motion parameters and wave parameters, automatic calculation in the on-board controller of the vessel optimal safe speed and course during a storm, automatic maintenance of the optimal safe speed and course of the vessel. The automatic control significantly increases the accuracy of calculations, excludes the human factor, reduces the depletion of the crew, and increases the reliability of the vessel control in a storm. The efficiency and effectiveness of the method, algorithmic and software were tested on Imitation Modelling Stand in a closed loop with mathematical vessel models of the navigation simulator Navi Trainer 5000.
  • Item
    PIVOT POINT POSITION DETERMINATION AND ITS USE FOR MANOEUVRING A VESSEL
    (2022) Zinchenko, S.; Tovstokoryi, O.; Nosov, P.; Popovych, I. S.; Kyrychenko, K.; Зінченко, С. М.; Товстокорий, О.; Носов, П. С.; Попович, І. С.; Кириченко, К. В.
    The article deals with the use of Pivot Point to optimize vessel control. It is shown that the position of the Pivot Point should be calculated relative to the center of rotation, and not the center of gravity, as previously thought. For the first time, the dependence of the rotation center displacement on the longitudinal speed of the vessel has been obtained. For the linear model of the vessel, the subdomains of admissible controls are constructed, and the special positions of the Pivot Point are analyzed. The dependence of the control distribution coefficient on the position of the Pivot Point is obtained. Optimal controls are considered. The operability and efficiency of the methods have been verified by mathematical modeling. У статті йдеться про використання точки опори для оптимізації керування судном. Показано, що положення точки опори слід розраховувати відносно центру обертання, а не центру ваги, як вважалося раніше. Вперше отримано залежність переміщення центру обертання від поздовжньої швидкості судна. Для лінійної моделі судна побудовано рівні допустимих елементів керування та проаналізовано спеціальні положення точки опори. Отримано залежність коефіцієнта розподілу контролю від положення точки опори. Розглянуто оптимальні засоби керування. Практичність та ефективність методів підтверджено математичним моделюванням.
  • Thumbnail Image
    Item
    AUTOMATIC VESSEL CONTROL IN STORMY CONDITIONS
    (2021) Mateichyk, V.; Zinchenko, S.; Tovstokoryi, O.; Nosov, P.; Nahrybelnyi, Ya.; Popovych, I.; Kobets, V.; Матейчук, В. М.; Зінченко, С. М.; Товстокорий, О.; Носов, П. С.; Нагребельний, Я.; Попович, І. С.; Кобець, В. М.
    Управління судном під час шторму є найскладнішим етапом плавання судна, оскільки вимагає швидкого прийняття рішень у складних умовах. Практичний досвід показує, що погіршення умов праці екіпажу зазвичай пов’язане зі збільшенням кількості контрольних помилок. У статті розглядається можливість автоматичного керування судном у штормових умовах шляхом автоматичного обчислення в бортовому контролері судна оптимальної безпечної швидкості та курсу під час шторму. Це дозволило значно підвищити точність розрахунків, виключити людський фактор, зменшити виснаження екіпажу, підвищити надійність управління судном у шторм. Ефективність та результативність методу, алгоритмічного та програмного забезпечення перевірено на стенді імітаційного моделювання у замкненому циклі з математичними моделями суден навігаційного тренажера Navi Trainer 5000.
  • Item
    AUTOMATIC OPTIMAL CONTROL OF A VESSEL WITH REDUNDANT STRUCTURE OF EXECUTIVE DEVICES
    (2021) Zinchenko, S.; Tovstokoryi, O.; Ben, A.; Nosov, P.; Popovych, I. S.; Nahrybelnyi, Y.; Зінченко, С.; Товстокорий, О.; Бень, А.; Носов, П.; Попович, І. С.; Нагрибельний, Я.
    The article considers the issues of automatic control of the vessel movement with a redundant control structure. Redundant structures are now widely used on all vessels with a dynamic positioning system to improve control efficiency (accuracy, maneuverability, reduce energy consumption and emissions), reliability and environmental safety. A brief review of the literature on the use of redundant structures to improve control efficiency is made. In open sources, the authors have not found solutions that improve the efficiency of the control by using redundant structures of actuators. Therefore, it was concluded that the development of such systems is relevant. Several schemes for splitting control into executive devices of a redundant structure, including an optimal splitting scheme, are considered. A comparative analysis of the considered splitting schemes with the optimal one is carried out. Comparative analysis showed that the use of optimal control of the redundant structure of actuators allows increasing the accuracy of dynamic positioning by (20–40)%, depending on the direction of the created control, as well as reducing fuel consumption by (30–100)%, which determines its advantages over known solutions. The mathematical and software support for an automatic optimal control system with redundant control has been developed. The operability and efficiency of the mathematical and software support were tested in a closed circuit with a control object in the MATLAB environment. The conducted experiments confirmed the operability and efficiency of the developed method, algorithms and software and allow to recommend them for practical use in the development of vessel control systems with redundant control structures. У статті розглядаються питання автоматичного керування рухом судна із надлишковою структурою виконавчих пристроїв. Надлишкові структури виконавчих пристроїв широко використовуються на суднах з динамічною системою позиціонування для підвищення надійності та ефективності керування (точності, маневреності, зменшення енергоспоживання та викидів). Зроблено короткий огляд літератури щодо використання надлишкових структур у системах керування. Виявлено, що традиційно надлишкові структури використовуються для підвищення надійності за рахунок резервування та ефективності у системах динамічного позиціонування у ручному режимі. Запропоновано використовувати оптимальне керування надлишковими структурами у автоматичному режимі. Розглянуто кілька схем розщеплення, включаючи оптимальну, сумарних керуючих сил і моменту по виконавчим пристроям надлишкової структури. Проведено порівняльний аналіз розглянутих схем розщеплення з оптимальною, який показав, що використання оптимального керування надлишковою структурою дозволяє підвищити точність динамічного позиціонування на (20-40)% та зменшити витрати палива на (30-100 )%, у залежності від напрямку створюваної керуючої сили, що визначає переваги оптимального керування перед відомими рішеннями. Розроблено алгоритмічне та програмне забезпечення автоматичної системи оптимального керування із надлишковою структурою виконавчих пристроїв. Працездатність та ефективність методу, алгоритмічного і програмного забезпечення перевірені математичним моделюванням у замкнутому контурі з об'єктом керування у середовищі MATLAB.