Факультет психології, історії та соціології
Permanent URI for this collectionhttps://ekhsuir.kspu.edu/handle/123456789/248
Browse
Search Results
Item AUTOMATIC DETERMINATION OF THE NAVIGATORS MOTIVATION MODEL WHEN OPERATING WATER TRANSPORT(2021) Nosov, P. S.; Popovych, I. S.; Zinchenko, S. M.; Kobets, V. M.; Safonova, A. F.; Appazov, E. S.; Носов, П. С.; Зінченко, С. М.; Кобець, В. М.; Сафонова, Г. Ф.; Аппазов, Е. С.; Попович, І. С.; Зинченко, С. Н.; Кобец, В. Н.; Сафонова, А. Ф.; Аппазов, Э. С.; Попович, И. С.Context. The article proposes an approach for automated identification of the navigators motivational model in the control of water transport. Algorithms for data extraction as a result of the man-machine interaction of navigator with the electronic control systems of the vessel during performing navigation operations of increased complexity are proposed. Objective. The purpose of research is to apply formal and algorithmic approaches to extracting data on the motivational model of navigator to prevent accidents in water transport. Method. The identification of manifestation determination of navigators’ mental activity by means of the visual concept of the geometric group theory is proposed. This approach delivered the visual systematic-logical combining of diagnostic methods aimed at determining navigators motivational centers and the processes of professional activity like maneuver performing. The key indicator of identification is said to be the parameter of the navigator’s activity as “rpm_port” having an impact on the vessel speed being a marker of intensification of the navigator’s physiological activity. Such an approach is beneficial in time phase identification while maneuvering indicating explicitly at the stepping up of the navigator’s physiological motivational state. It was proven to be correct based on the results due to Ward’s dendrogram, several statistical methods and applied software. The obtained research results encourage the prediction of the navigator’ motivational states in critical situations. Results. In order to confirm the proposed formal-algorithmic approach, an experiment was carried out using the navigation simulator Navi Trainer 5000. Automated analysis of experimental ones made it possible to form a motivational map of the navigator and determine the decision-making model affecting in the processes of control vessel in difficult situations. Conclusions. The proposed research approaches made it possible to automate the processes of extracting data indicating the principles of decision-making by navigator. The effectiveness of proposed approach was substantiated by the results of experimental data automated processing and the constructed tree-like decision-making spaces. Актуальність. У статті запропоновано підхід автоматизованої ідентифікації мотиваційної моделі навігаторів при управлінні морським транспортом. Запропоновано алгоритми вилучення даних в результаті людино-машинного взаємодії навігатора з електронними системами управління судном при виконанні навігаційних операцій підвищеної складності. Мета. Метою дослідження є застосування формального і алгоритмічного підходів до вилучення даних мотиваційної моделі навігатора для запобігання аварій на водному транспорті. Метод. Пропонується ідентифікація детермінованних проявів розумової діяльності навігаторів за допомогою візуальної концепції геометричної теорії груп. Такий підхід забезпечив наочне системо-логічне поєднання діагностичних методів що спрямовані на визначення мотиваційних центрів штурмана і процесів професійної діяльності, наприклад при виконанні маневрів. Ключовим показником ідентифікації вважається параметр активності штурмана «rpm_port», що впливає на швид- кість судна і є маркером посилення його фізіологічної активності. Такий підхід корисний для ідентифікації тимчасових фаз при маневруванні, що явно вказують на зміну мотиваційного стану навігатора. Даний аспект був доведений на підставі результатів дендрограмми Уорда, кількох статистичних методів і прикладного програмного забезпечення. Отримані результати досліджень дозволяють прогнозувати мотиваційні стани навігатора у критичних ситуаціях. Результат. З метою підтвердження запропонованого формально-алгоритмічного підходу був проведений експеримент з використанням навігаційного симулятора Navi Trainer 5000. Автоматизований аналіз експериментальних даних дозволив сформувати мотиваційну карту навігатора і визначити модель прийняття рішень що впливають на процеси управління судном у складних ситуаціях. Висновок. Запропоновані підходи дослідження дозволили автоматизувати процеси вилучення даних що вказують на принципи прийняття рішень навігатором. Результативність запропонованого підходу була обґрунтована за результатами автоматизованої обробки експериментальних даних і побудованих ознакових деревоподібних просторів прийняття рішень. Актуальность. В статье предложен подход автоматизированной идентификации мотивационной модели навигаторов при управлении морским транспортом. Предложены алгоритмы извлечения данных в результате человеко-машинного взаимодействия навигатора с электронными системами управления судном при выполнении навигационных операций повышенной сложности. Цель. Целью исследования является применение формального и алгоритмического подходов к извлечению данных мотивационной модели навигатора для предотвращения аварий на водном транспорте. Метод. Предлагается идентификация детермининированных проявлений мыслительной деятельности навигаторов с помощью наглядной концепции геометрической теории групп. Такой подход обеспечил наглядное систематико-логическое сочетание диагностических методов, направленных на определение мотивационных центров штурмана и процессов профессиональной деятельности, например при выполнении маневров. Ключевым показателем идентификации считается параметр активности штурмана «rpm_port», влияющий на скорость судна и являющийся маркером усиления его физиологической активности. Такой подход полезен для идентификации временной фазы при маневрировании, что явно указывает на изменение мотивационного состояния навигатора. Данный аспект был доказан на основании результатов дендрограммы Уорда, нескольких статистических методов и прикладного программного обеспечения. Полученные результаты исследований позволяют прогнозировать мотивационные состояния навигатора в критических ситуациях. Результат. С целью подтверждения предложенного формально-алгоритмического подхода был проведен эксперимент с использованием навигационного симулятора Navi Trainer 5000. Автоматизированный анализ экспериментальных данных позволил сформировать мотивационную карту навигатора и определить модель принятия решений влияющих на процессы управления судном в сложных ситуациях. Вывод. Предложенные подходы исследования позволили автоматизировать процессы извлечения данных указывающих на принципы принятия решений навигатором. Результативность предложенного подхода была обоснована по результатам автоматизированной обработки экспериментальных данных и построенных признаковых древовидных пространств принятия решений.Item IDENTIFICATION OF MARINE EMERGENCY RESPONSE OF ELECTRONIC NAVIGATION OPERATOR(2021) Nosov, P. S.; Cherniavskyi, V. V.; Zinchenko, S. M.; Popovych, I. S.; Nahrybelnyi, Ya. А.; Nosova, H. V.; Носов, П. С.; Чернявський, В. В.; Зінченко, С. М.; Попович, І. С.; Нагрибельний, Я. А.; Чернявский, В. В.; Зинченко, С. Н.; Попович, И. С.; Нагрибельный, Я. А.; Носова, Г. В.Context. The article introduces an approach for analyzing the reactions of a marine electronic navigation operator as well as automated identification of the likelihood of the negative impact of the human factors in ergatic control systems for sea transport. To meet the target algorithms for providing information referring to the results of human-machine interaction of an operator in marine emergency response situations while managing increasing complexity of navigation operations’ carrying out are put forward. Objective. The approach delivers conversion of the operator’s actions feature space into a logical-geometric one of p-adic systems making the level of the operator’s intellectual activity by using automated means highly likely to be identified. It is sure to contribute to its dynamic prediction for the sake of further marine emergency situations lessening. Method. Within the framework of the mentioned above approach attaining objective as automated identification of the seg mented results of human-machine interactions a method for transforming deterministic fragments of an operator’s intellectual activity in terms of p-adic structures is proposed to be used. To cope with such principles as specification, generalization as well as transi tions to different perception spaces of the navigation situation by the operator are said to be formally specified. Having been carried out of simulation modeling has turned out to confirm the feasibility of the proposed above approach causing, on the grounds of tem porary identifiers, the individual structure of the operator’s reactions to be determined. As a result, the data obtained has delivered the possibility of having typical situations forecasted by using automated multicriteria methods and tools. This issue for its part is said to be spotted as identification of individual indicators of the operator’s reaction dynamics in complex man-machine interaction. Results. In order to have the proposed formal-algorithmic approach approved an experiment was performed using the navigation simulator Navi Trainer 5000 (NTPRO 5000). Automated analysis of experimental server and video data have furnished the means of deterministic operator actions identification in the form of metadata of the trajectory of his reactions within the space of p-adic struc tures. Thus, the results of modeling involving automated neural networks are sure to facilitate the time series of the intellectual activ ity of the electronic marine navigation operator to be identified and, therefore, to predict further reactions with a high degree of reli ability. Conclusions. The proposed formal research approaches combined with the developed automated means as well as algorithmic and methodological suggestions brought closer to the objectives for solving the problem of automated identification of the negative impact of the human factors of the electronic navigation operator on a whole new level. The efficiency of the proposed approach is noticed to have been approved by the results of automated processing of experimental data and built forecasts. Актуальність. У статті запропоновано підхід аналізу реакцій оператора морської електронної навігації та автоматизо ваної ідентифікації негативного впливу його людського фактору в ергатичних системах управління морським транспортом. Запропоновано алгоритми зчитування інформації про результати людино-машинного взаємодії оператора у критичних ситуаціях при виконанні навігаційних операцій підвищеної складності. Мета. Метою дослідження є розробка підходу що дозволяє перетворити простір ознак щодо дій оператора у вигляді ло гіко-геометричного простору p-адичних систем, в результаті якого з’являється можливість ідентифікації рівня інтелектуаль ної діяльності оператора за допомогою автоматизованих засобів і спрогнозувати його динаміку для нівелювання критичних ситуацій. Метод. В рамках підходу і з метою автоматизованої ідентифікації сегментованих результатів людино-машинної взаємо дії описано метод перетворення детермінованих фрагментів інтелектуальної діяльності оператора в термінах p-адічних структур. Формально описані принципи деталізації, узагальнення, а також переходів у різні простори сприйняття навігацій ної ситуації оператором. Проведено імітаційне моделювання що підтверджує доцільність запропонованого підходу і дозво ляє на основі часових ідентифікаторів визначити індивідуальну структуру реакцій оператора. Отримані дані дозволяють виконувати прогнозування для типових ситуацій із застосуванням автоматизованих багатокритеріальних методів і засобів, що у свою чергу дає можливість ідентифікувати індивідуальні показники динаміки реакцій оператора у складній людино машинній взаємодії. Результати. З метою підтвердження запропонованого формально-алгоритмічного підходу був проведений експеримент з використанням навігаційного симулятора Navi Trainer 5000 (NTPRO 5000). Автоматизований аналіз експериментальних серверних даних, даних відеоряду, дозволив ідентифікувати детерміновані дії оператора у вигляді метаданих траєкторії його реакцій в рамках просторів p-адичних структур. Результати моделювання із застосуванням автоматизованих нейронних мереж дозволили отримати часові ряди інтелектуальної діяльності оператора електронної морської навігації та з достатнім ступенем надійності виконувати прогноз подальших реакцій. Висновки. Запропоновані формальні підходи дослідження, в поєднанні із розробленими автоматизованими засобами, а також алгоритмічними і методологічними пропозиціями дозволили на новому рівні підійти до вирішення проблеми автома тизованої ідентифікації негативного прояву людського фактора оператора електронною навігації. Результативність запропонованого підходу була обґрунтована за результатами автоматизованої обробки експериментальних даних і побудованих прогнозів. Актуальность. В статье предложен подход анализа реакций оператора морской электронной навигации и автоматизи рованной идентификации негативного влияния его человеческого фактора в эргатических системах управления морским транспортом. Предложены алгоритмы считывания информации о результатах человеко-машинного взаимодействия опера тора в критических ситуациях при выполнении навигационных операций повышенной сложности. Цель. Целью исследования является разработка подхода позволяющего преобразовать признаковое пространство дейст вий оператора в виде логико-геометрического пространства p-адических систем, в результате которого появляется возмож ность идентифицировать уровень интеллектуальной деятельности оператора с помощью автоматизированных средств и спрогнозировать его динамику для нивелирования критических ситуаций. Метод. В рамках подхода и с целью автоматизированной идентификации сегментированных результатов человеко машинные взаимодействия описан метод преобразования детерминированных фрагментов интеллектуальной деятельности оператора в терминах p-адических структур. Формально описаны принципы детализации, обобщения, а также переходов в различные пространства восприятия навигационной ситуации оператором. Проведено имитационное моделирование под тверждающее целесообразность предложенного подхода и позволяющее на основе временных идентификаторов определить индивидуальную структуру реакций оператора. Полученные данные позволяют выполнять прогнозирование для типовых ситуаций с применением автоматизированных многокритериальных методов и средств, что в свою очередь дает возмож ность идентифицировать индивидуальные показатели динамики реакций оператора в сложном человеко-машинном взаимо действии. Результаты. С целью подтверждения предложенного формально-алгоритмического подхода был проведен эксперимент с использованием навигационного симулятора Navi Trainer 5000 (NTPRO 5000). Автоматизированный анализ экспериментальных серверных данных, данных видеоряда, позволил идентифицировать детерминированные действия оператора в виде метаданных траектории его реакций в рамках пространств p-адических структур. Результаты моделирования с применением автоматизированных нейронных сетей позволили получить временные ряды интеллектуальной деятельности оператора электронной морской навигации и с достаточной степенью надежности выполнять прогноз дальнейших реакций. Выводы. Предложенные формальные подходы исследования, в сочетании с разработанными автоматизированными средствами, а также алгоритмическими и методологическими предложениями позволили на новом уровне подойти к решению проблемы автоматизированной идентификации негативного проявления человеческого фактора оператора электронной навигации. Результативность предложенного подхода была обоснована по результатам автоматизированной обработки экспериментальных данных и построенных прогнозов.