STRONG TOPOLOGY ON THE SET OF PERSISTENCE DIAGRAMS

dc.contributor.authorZarichnyi, M.
dc.contributor.authorSavchenko, A.
dc.contributor.authorKiosak, V.
dc.contributor.authorСавченко, О. Г.
dc.date.accessioned2022-02-16T10:59:27Z
dc.date.available2022-02-16T10:59:27Z
dc.date.issued2019
dc.descriptionSavchenko, A. Strong topology on the set of persistence diagrams / V. Kiosak, A. Savchenko, M. Zarichnyi // American Institute of Physics Conference Proceedings. – 2019. – V. 2164. – Is. 1. – AIP Conference Proceedings 2164, 040006 (2019) – P. 040006-1 – 040006-4. doi.org/10.1063/1.5130798.uk_UA
dc.description.abstractWe endow the set of persistence diagrams with the strong topology (the topology of countable direct limit of increasing sequence of bounded subsets considered in the bottleneck distance). The topology of the obtained space is described. Also, we prove that the space of persistence diagrams with the bottleneck metric has infinite asymptotic dimension in the sense of Gromov.uk_UA
dc.identifier.urihttp://ekhsuir.kspu.edu/123456789/16382
dc.titleSTRONG TOPOLOGY ON THE SET OF PERSISTENCE DIAGRAMSuk_UA
dc.typeArticleuk_UA

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
21..pdf
Size:
394.5 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: