Факультет комп'ютерних наук, фізики та математики

Permanent URI for this collectionhttps://ekhsuir.kspu.edu/handle/123456789/529

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    ОСОБЛИВОСТІ ЗДІЙСНЕННЯ ЗАМІНИ ЗМІННИХ В ІНТЕГРАЛІ РІМАНА В КУРСІ МАТЕМАТИЧНОГО АНАЛІЗУ ПРИ ПІДГОТОВЦІ МАЙБУТНІХ ВЧИТЕЛІВ МАТЕМАТИКИ
    (2021) Самойленко, В. Г.; Григор’єва, В. Б.; Гнєдкова, О. О.; Котова, О. В.; Samoylenko, V. G.; Hryhorieva, V. B.; Hniedkova, O. O.; Kotova, O. V.
    В статті розглядаються особливості введення заміни змінних в інтегралі Рімана у процесі викладання курсу математичного аналізу на педагогічних спеціальностях вищих навчальних закладів. Формулювання проблеми. У зв’язку з тим, що на даний час середня загальноосвітня та професійна освіта вступили у принципово новий етап свого розвитку, характерними рисами якого є розбудова освіти на основі нових прогресивних концепцій, запровадження у навчально-виховний процес сучасних педагогічних та інформаційних технологій, науково-методичних досягнень, особливо актуальною постає проблема вдосконалення професійної підготовки вчителів математики. Математичний аналіз має провідне значення у підготовці майбутніх вчителів математики. В статті на прикладі розгляду конкретного питання даного курсу визначені математичні аспекти, які стосуються особливостей викладання матеріалу з урахуванням тих вимог, що висуваються нині до процесу підготовки фахівців у галузі освіти. Розглянуто питання заміни змінних в інтегралі Рімана для функцій, заданих на метричних просторах з мірою, зокрема, і в кратних інтегралах. Матеріали і методи. Загальні методи математичного аналізу та аналіз математичної літератури щодо обчислення кратних інтегралів та інтегралу Рімана із застосуванням методу заміни змінних, аналіз та узагальнення власного педагогічного досвіду та педагогічного досвіду провідних вчителів та науковців. Результати. В роботі розглянуто авторський підхід щодо здійснення заміни змінних в інтегралі в загальному випадку, заміни змінних в інтегралі Рімана по відрізку, а також для кратних інтегралів від функцій, заданих на метричних просторах з мірою. Висновки. Підхід, розглянутий в статті, має певні переваги, які пояснюються тим, що кратні, поверхневі та криволінійні інтеграли вписуються в дану схему та одержуються в якості прикладів при відповідному виборі простору та міри. Саме тому такий підхід при підготовці майбутніх вчителів математики сприяє професійній орієнтації навчання математичного аналізу. Abstract. The article considers the peculiarities of variables substitution introduction in the Riemann integral in the teaching of mathematical analysis in pedagogical specialties of higher educational institutions. Problem formulation. Due to the fact at present secondary and vocational education have entered a fundamentally new stage of its development, the characteristic features of which are the development of education on the basis of new progressive concepts, the introduction into the educational process of modern pedagogical and information technologies, scientific methodological achievements, the problem of improvement of the professional training of mathematics teachers is especially relevant. Mathematical analysis has a great importance in future mathematics teachers learning. The article on the example of consideration of a specific issue of this course identifies the mathematical aspects related to the peculiarities of material teaching, taking into account the current requirements for learning process. The question of replacing variables in the Riemann integral for functions given on metric spaces with measure, in particular, in multiple integrals, is considered. Materials and methods. General methods of mathematical analysis and analysis of mathematical literature on the calculation of multiple integrals and the Riemann integral using the method of substituting variables, analysis and generalization of own pedagogical experience and pedagogical experience of leading teachers and scientists were used. Results. The paper considers the author's approach to replacement of variables in the integral in the general case, the replacement of variables in the Riemann integral by a segment, as well as for multiple integrals of functions given on metric spaces with measure. Conclusions. The approach discussed in the article has certain advantages, which are explained by the fact that multiples, surface and curvilinear integrals fit into this scheme and are obtained as examples with the appropriate choice of space and measure. That is why this approach in the learning of future mathematics teachers contributes to the professional orientation of teaching mathematical analysis.
  • Item
    ОСОБЛИВОСТІ ВВЕДЕННЯ ПОНЯТТЯ ІНТЕГРАЛУ РІМАНА ПІД ЧАС ВИКЛАДАННЯ МАТЕМАТИЧНОГО АНАЛІЗУ МАЙБУТНІМ УЧИТЕЛЯМ МАТЕМАТИКИ
    (2019) Самойленко, В. Г.; Григор’єва, В. Б.; Samoylenko, V. G.; Hryhorieva, V. B.
    Зміст математичної підготовки майбутніх вчителів у вищих педагогічних навчальних закладах суттєво відрізняється від змісту підготовки фахівців в класичних і технічних університетах. Це пов’язано з тим, що фундаментальна математична підготовка майбутнього вчителя математики повинна забезпечити дієві знання, а також професійні компетенції, які виходять за межі шкільного курсу математики. Серед дисциплін, які забезпечують фундаментальну математичну підготовку, провідне значення має математичний аналіз. У статті на прикладі розгляду конкретного питання даного курсу визначені математичні аспекти, які стосуються особливостей викладання матеріалу з урахуванням тих вимог, що висуваються нині до процесу підготовки фахівців в галузі освіти. Розглянуто введення поняття інтегралу Рімана для функцій, заданих на метричних просторах з мірою. Переваги такого підходу пояснюються тим, що кратні, поверхневі та криволінійні інтеграли вписуються в дану схему та одержуються, таким чином, в якості прикладів під час відповідного вибору простору та міри. The article deals with the methodical features of the introduction of the concept of the Riemann integral in the course of teaching the course of mathematical analysis in the pedagogical specialty. The future teacher of mathematics must obtain a basic mathematical training, which will provide him with effective knowledge, professional competences, beyond the boundaries of the course of mathematics that is taught in school. Mathematical analysis plays a leading role in the training of future mathematics teachers. In the article, on the example of consideration of a particular issue of this course, mathematical aspects related to the peculiarities of the teaching of the material are determined, taking into account those requirements that are being made today to the process of training specialists in the field of education. We consider the introduction of the concept of the Riemann integral for functions given on metric spaces with measure. The advantages of this approach are explained by the fact that multiple, surface, and curvilinear integrals fit into this scheme and are thus obtained as examples, with the appropriate choice of space and measure.