Факультет комп'ютерних наук, фізики та математики
Permanent URI for this collectionhttps://ekhsuir.kspu.edu/handle/123456789/529
Browse
2 results
Search Results
Item ФОРМУВАННЯ ПОНЯТТЯ ПЛОСКОГО РОЗМІЩЕННЯ ТОЧОК ЗАСОБАМИ МЕТРИЧНОЇ ГЕОМЕТРІЇ ПРИ ВИВЧЕННІ МЕТРИЧНИХ ПРОСТОРІВ(2023) Кузьмич, В.; Валько, К.; Кузьмич, Л.; Савченко, О.; Kuz’mich, V; Valko, K; Kuzmich, L; Savchenko, OПостановка проблеми. При вивченні метричних просторів у здобувачів вищої освіти часто виникають труднощі з розумінням основних понять та властивостей цих просторів. Це, у значній мірі, є наслідком формалізації цих понять з одного боку, та збереження відповідних формулювань та назв, звичних для здобувачів зі шкільного курсу математики. Найпростіші поняття взаємного розміщення точок метричного простору, наприклад, прямолінійність їх розміщення, у різних просторах можуть набувати різних властивостей. Інколи ці властивості ніяким чином не узгоджуються з відповідними властивостями у звичних для здобувачів евклідових просторах. Для подолання вказаних труднощів доцільно використовувати методи геометричної інтерпретації та візуалізації цих властивостей. Доцільним, при цьому, є використання елементів метричної геометрії. Її методи дозволяють інтерпретувати геометричні особливості взаємного розміщення точок метричного простору у звичних для здобувачів вищої освіти декартових (прямокутних) системах координат. У роботі наведено приклади візуалізації властивості плоского розміщення чотирьох точок неевклідового метричного простору у прямокутній тривимірній системі координат. Матеріали та методи. Результати роботи отримані на підставі аналізу діючих підручників з вищої математики для закладів вищої освіти, наукових публікацій та апробовані при читанні відповідного спецкурсу студентам спеціальності «014.04 Середня освіта (математика)» магістерського рівня вищої освіти. Для отримання зображень використовувалось динамічне геометричне середовище GeoGebra 3D. Результати. На основі означення кута як упорядкованої трійки точок довільного метричного простору, та кутової характеристики цього кута, встановлено факт плоского розміщення чотирьох точок неевклідового метричного простору, та наведено приклади цифрової візуалізації цього розміщення за допомогою динамічного геометричного середовища GeoGebra 3D. Така візуалізація дає можливість знайомити здобувачів вищої освіти з найпростішими особливостями неевклідових геометрій. Висновки. Аналітичний апарат метричної геометрії дає можливість сформувати узагальнене поняття плоского розміщення точок довільного метричного простору. Використання цифрових технологій, зокрема графічних редакторів, дозволяє зробити візуалізацію окремих особливостей взаємного розміщення точок довільного метричного простору. Використання достатньо простих аналітичних перетворень при побудові поняття плоского розміщення точок робить можливим знайомство здобувачів загальної середньої освіти, які навчаються у профільних класах з поглибленим вивченням математики, з основами неевклідових геометрій. Formulation of the problem. When studying metric spaces, higher education students often need help understanding these spaces' basic concepts and properties. It, to a large extent, is a consequence of the significant formalization of such concepts on the one hand and the preservation of the corresponding formulations and names familiar to students from a school mathematics course. The most straightforward concepts of mutual placement of points of metric space, for example, the rectilinearity of their arrangement, can acquire different properties in different spaces. Sometimes, these properties do not agree with the corresponding properties in Euclidean spaces. It is advisable to use geometric interpretation and visualization methods of these properties to overcome these difficulties. At the same time, it is appropriate to use elements of metric geometry. Its methods make it possible to interpret the geometric features of the mutual placement of points of metric space in Cartesian (rectangular) coordinate systems known to students. Moreover, it becomes possible to visualize these features with the help of graphic editors since they, as a rule, use numerical values of the coordinates of points to visualize them. The paper gives examples of visualization of the property of the flat arrangement of four points of non-Euclidean metric space in a rectangular three-dimensional coordinate system. Materials and methods. The results of the work were obtained by analyzing existing higher mathematics textbooks for higher education institutions and scientific publications. They were tested while reading the corresponding special course for students of the specialty "014.04 Secondary education (mathematics)" of the master's level of higher education. The dynamic geometric environment GeoGebra 3D was used to obtain images. Results. Based on the definition of an angle as an ordered trio of points of an arbitrary metric space and the angular characteristic of this angle, the fact of the flat arrangement of four points of a non-Euclidean metric space is established, with using the dynamic geometric environment GeoGebra 3D examples of digital visualization of this arrangement are given. Such a visualization makes it possible to familiarize students with higher education with the most straightforward features of non-Euclidean geometries. Conclusions. The analytical apparatus of metric geometry makes it possible to form a generalized concept of a flat arrangement of points in an arbitrary metric space. Digital technologies, particularly graphic editors, make it possible to visualize individual features of the mutual placement of points in an arbitrary metric space. The use of relatively simple analytical transformations when constructing the concept of a flat arrangement of points makes it possible for general secondary education students who study in special classes with in-depth study of mathematics to know themselves with the basics of non-Euclidean geometries.Item МОДЕЛЮВАННЯ ВЗАЄМНОГО РОЗМІЩЕННЯ ТОЧОК МЕТРИЧНОГО ПРОСТОРУ(2021) Валько, К. В.; Кузьмич, В. І.; Кузьмич, Л. В.; Савченко, О. Г.; Валько, Е. В.; Кузьмич, В. И.; Кузьмич, Л. В.; Савченко, А. Г.; Valko, A. G.; Kuz’mich, V. I.; Kuzmich, L. V.; Savchenko, O. G.Робота присвячена побудові математичної моделі зображення геометричних образів у метричних просторах за допомогою основних понять метричної геометрії. Головною особливістю цієї геометрії є можливість використання лише однієї характеристики, що встановлюється між точками метричного простору, – відстані між ними. Це накладає на дослідження з метричної геометрії значні обмеження та збільшує складність аналітичних співвідношень між її основними геометричними образами – прямолінійним розміщенням точок, плоским розміщенням точок, кутом і його числовою характеристикою. Образи класичних геометричних фігур евклідової геометрії – трикутник, тетраедр і таке інше можуть мати достатньо незвичні форми та властивості у метричній геометрії. Значною перевагою цієї геометрії є достатньо високий рівень загальності, який дозволяє з однієї точки зору розглядати як класичну геометрію Евкліда, так і неевклідові геометрії. Швидкий розвиток метричної геометрії у наш час зумовлений численними її застосуваннями у різних галузях науки та інженерії. Складність аналітичних перетворень частково компенсується можливістю застосування до них сучасних засобів обчислювальної техніки та комп’ютерної візуалізації геометричних образів. Однією із перепон до використання комп’ютерної візуалізації є необхідність використання формул перерахунку відстаней між точками метричного простору у декартові координати цих точок. Сучасні програмні засоби для зображення геометричних образів використовують, в основному, задані координати точок, що утруднює геометричну інтерпретацію цих образів та їх перетворення. У роботі пропонуються формули переходу від значень відстані між точками метричного простору до їх декартових координат у випадку геометричного образу тетраедра. Цей образ відіграє значну роль у встановленні фактів прямолінійного та плоского розміщення точок простору і дає можливість візуалізації впливу метрики простору на його геометричні властивості. Програмне забезпечення результатів роботи використовує як стандартні обчислювальні засоби та засоби візуалізації (електронні таблиці Excel, динамічне геометричне середовище GeoGebra 3D), так і окремі комп’ютерні застосунки для обчислення об’єму тетраедра за довжинами його ребер. Работа посвящена построению математической модели изображения геометрических образов в метрических пространствах с помощью основных понятий метрической геометрии. Главной особенностью этой геометрии является возможность использования только одной характеристики, которая устанавливается между точками метрической пространства, – расстояния между ними. Это накладывает на исследования по метрической геометрии значительные ограничения и увеличивает сложность аналитических соотношений между ее основными геометрическими образами – прямолинейного расположения точек, плоского размещения точек, угла и его числовой характеристики. Образы классических геометрических фигур евклидовой геометрии – треугольник, тетраэдр и т.д. могут иметь достаточно необычные формы и свойства в метрической геометрии. Значительным преимуществом этой геометрии является высокий уровень общности, который позволяет с одной точки зрения рассматривать как классическую геометрию Евклида, так и неевклидовы геометрии. Быстрое развитие метрической геометрии в наше время обусловлено многочисленными ее приложениями в различных областях науки и инженерии. Сложность аналитических преобразований. частично компенсируется возможностью применения к ним современных средств вычислительной техники и компьютерной визуализации геометрических образов. Одной из преград к использованию компьютерной визуализации является необходимость использовать формулы пересчёта расстояний между точками метрического пространства в декартовы координаты этих точек. Современные программные средства изображения геометрических образов используют, в основном, заданные координаты точек, что затрудняет геометрическую интерпретацию этих образов и их преобразования. В работе предлагаются формулы перехода от значений расстояния между точками метрической пространства к их декартовым координатам в случае геометрического образа тетраэдра. Этот образ играет значительную роль в установлении фактов прямолинейного и плоского размещения точек пространства, и дает возможность визуализации влияния метрики пространства на его геометрические свойства. Программное обеспечение результатов работы использует как стандартные вычислительные средства и средства визуализации (электронные таблицы Excel, динамическую геометрическую среду GeoGebra 3D), так и отдельные компьютерные приложения для вычисления объема тетраэдра по длинам его ребер. The work is devoted to the construction of a mathematical model of the image of geometric images in metric spaces using the basic concepts of metric geometry. The main feature of this geometry is the ability to use only one characteristic that is established between the points of the metric space - the distance between them. This imposes significant limitations on the study of metric geometry, and increases the complexity of analytical relationships between its basic geometric images - rectilinear placement of points, flat placement of points, angle and its numerical characteristics. Images of classical geometric figures of Euclidean geometry - a triangle, tetrahedron and so on, can have quite unusual shapes and properties in metric geometry. A significant advantage of this geometry is a significant level of generality, which allows from one point of view to consider both classical Euclidean geometry and non-Euclidean geometries. The significant development of metric geometry in our time is due to its numerous applications in various fields of science and engineering. The complexity of analytical transformations is partially offset by the possibility of applying modern computer technology and computer visualization of geometric images. One of the obstacles to the use of computer visualization is the need to use formulas for calculating the distances between points of a metric space in the Cartesian coordinates of these points. Modern software for displaying geometric images uses mainly the specified coordinates of points. This makes it difficult to geometrically interpret these images and transform them. The paper proposes formulas for the transition from the values of the distance between the points of the metric space to their Cartesian coordinates in the case of a geometric image of a tetrahedron. This image plays a significant role in establishing the facts of rectilinear and flat placement of points in space and makes it possible to visualize the influence the metric of space on its geometric properties. The results software uses both standard computing and visualization tools (Excel spreadsheets, GeoGebra 3D dynamic geometric environment) and individual computer applications to calculate the volume of a tetrahedron by the lengths of its edges.